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1. Introduction

In the past decades, parton shower Monte Carlo programs, such as Pythia [3, 4] or Her-

wig [5, 6] have been indispensable tools for planning and analysing particle physics experi-

ments at different colliders. It can be anticipated that they will play a similarly prominent

rôle in the LHC era.

There are a number of reasons for the success of these workhorses. One of the most

important ones rests in their ability to bridge the gap between few-parton final states, as

described by fixed-order perturbative calculations, and the real world, where a multitude

of hadrons etc. fills the detectors of the experiments. The transformation of the partons

of perturbation theory into the visible hadrons, hadronisation, is a direct consequence of

the confinement property of QCD. Currently, this phenomenon can be described in terms

of phenomenological models only, which depend on various phenomenological parameters

tuned to data. These parameters and hence the validity of the models in turn depends

on the properties (such as the flow of energy and other QCD quantum numbers) of the

parton ensemble; therefore it is important that these properties are kept under control.

It is the merit of parton showers that they provide a well-understood, theoretically sound

and universal framework of translating the few-parton states of fixed-order perturbation

theory, calculated at some high scale, with multi-parton states at much lower scales, of the

order of a few ΛQCD, where hadronisation sets in. In so doing the parton showers help

guarantee the validity of the tuned parameters of the hadronisation models.

To achieve this translation of few-parton to multi-parton states, the parton shower

programs rely on correctly describing QCD particle production in the dominant soft and

collinear regions of phase space, giving rise to the bulk of radiation. It is in this region,

where the complicated radiation pattern of multiple particle emission factorises into nearly

independent - up to ordering in terms of a suitably chosen parameter - individual emis-

sions of single partons. This approximation, namely expanding around the soft or collinear

limit, ultimately leads to the resummation of the corresponding leading logarithms, which

are then typically encapsulated in exponential form in the Sudakov form factors. Their

probabilistic interpretation in fact is the central feature allowing for a straightforward im-

plementation in an event generator, producing unweighted events. Due to the resummation

of leading logarithms it should thus not be too surprising that the parton shower programs

more than often produce answers for QCD-related questions, which approximate exact

results very well.

However, the quality of the answers provided by the parton shower approximation alone

relies on whether the question is related to the soft and/or collinear region in the phase

space of particle production. If this is not the case, for example because of the relevance

of hard emissions or of non-trivial correlations of particles, the quality of parton shower
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results tends to deteriorate. In such cases, evidently a full quantum mechanical treatment

as provided by fixed-order calculations becomes mandatory. Therefore, the problem of

systematically including higher-order effects into parton shower programs has been in the

center of research in the past few years. In principle, there have been two major avenues of

investigation. One dealt with the question of how to include the correct QCD next-to lead-

ing order correction to total cross sections [7]–[9], and has led to an implementation ready

for use by the experiments in form of the MC@NLO code [10]. The other considered the

inclusion of tree-level multi-leg matrix elements into the simulation [11]–[15], and has lead

to two types of algorithms being implemented. One, based on [11, 12], is the cornerstone of

the event generator Sherpa [16]–[18] and an alternative formulation of the same algorithm,

proposed in [13], has been implemented in Ariadne [19, 20]. The other merging algorithm,

based on [14, 15], has been incorporated in Alpgen [21], MadGraph/MadEvent [22]–

[24], and Helac [25, 26]. Although it is not entirely clear how these two approaches relate

in detail, some first comparisons [27] show an interesting and assuring degree of agreement.

As one of the most recent outcomes of this line of research, it became apparent that in

order to systematically improve the event generators by including higher-order corrections,

also the parton shower algorithms themselves must be ameliorated. Some developments

in this direction include an improved treatment of angular ordering and massive partons

in Herwig++ [28] or the introduction of a new k⊥-ordered shower in Pythia [29]. More

recently, and motivated by the wish to include loop-level calculations in a more straight-

forward and systematic manner, the application of subtraction terms, prevalent in QCD

next-to leading order calculations, has been proposed. This paper reports on the construc-

tion of a parton shower based on such subtraction terms. It uses the Catani-Seymour

dipole formalism [30, 31] and the corresponding subtractions as a starting point.1 This

formulation of a parton shower has been proposed for the first time in [1, 2]. A similar

ansatz relies on antenna subtraction terms [33, 34] and has been presented recently in [35].

The paper is organised as follows: After briefly introducing the idea of parton shower

algorithms based on subtraction terms in section 1.1 and a short review of the subtrac-

tion formalism of Catani-Seymour in section 1.2, section 2 states the basic construction

principles of the proposed shower description. In section 3 the actual parton shower built

on Catani-Seymour subtraction terms is constructed. The most general massive and the

massless case for all the possible QCD splitting types are discussed in detail, and the modifi-

cations needed to include splittings of supersymmetric particles are discussed. The analytic

expressions for the first shower emission from various core processes are compared with the

corresponding exact tree-level matrix element calculations in section 4. In section 5 pre-

dictions obtained with the developed shower formalism are confronted with experimental

data and other calculations. The focus hereby is on hadron production in e+e− collisions,

and Drell-Yan and QCD jet production at the Fermilab Tevatron. Section 6 is devoted to

the summary, conclusions, and an outlook on further developments.

1This approach has also been employed in a parallel project, [32].
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1.1 Parton showers based on subtraction methods

Since its formulation almost a decade ago, the Catani-Seymour dipole formalism [30, 31]

has been widely used in the calculation of next-to leading order (NLO) corrections in QCD,

see for instance [36]–[43].

Such calculations typically face the problem of infrared divergences in both the real

and the virtual parts of the NLO correction. In principle, such divergences are not really a

problem, since for physically meaningful observables, the Kinoshita-Lee-Nauenberg theo-

rem [44, 45] guarantees their mutual cancellation. To technically perform this cancellation,

however, the divergences need to be regularised, which is usually performed by dimensional

regularisation, i.e. continuing the calculation to d dimensions. There, the infrared diver-

gences manifest themselves as poles in 1/(4− d) or 1/(4− d)2. To deal with the poles and

achieve the cancellation, subtraction methods may be used. In general, they rely on the

fact that the infrared divergences in the real correction part follow an universal pattern.

This allows to construct simplified terms in a process-independent way that encapsulate all

infrared divergences occurring in the full matrix element. Then, subtracting these terms

from the real-correction matrix elements will yield an infrared-finite result, such that this

subtracted matrix element can be safely integrated numerically in four dimensions. In

addition, the subtraction terms are chosen such that they can be analytically integrated in

d dimensions over the phase space of the additional soft or collinear particle causing the

divergences. This yields the poles in 1/(4 − d) or 1/(4 − d)2, which are then added to the

virtual part of the correction, and thus cancel the poles there.

The catch with the subtraction methods is that the subtraction terms can be con-

structed locally from the (colour-ordered) Born matrix element. In the Catani-Seymour

method, for instance, pairs of particles are interpreted as emitting particle and spectator

and are subjected to a splitting kernel creating a third particle. In this splitting process,

one of the particles actually splits, while the recoil is compensated for by the spectator,

which may be interpreted as its colour partner. At the same time, the phase space fac-

torises exactly into a phase space over the original particles, already present at the Born

level, and into a phase space of the additional particle emerging in the splitting. This exact

factorisation corresponds to an exact mapping of the two original momenta (emitter and

spectator) onto three four-momenta. At each point of the procedure all particles remain

on their respective mass shell.

This is why constructing parton showers based on such methods currently is being

pursued by different groups. It is clear that these showers, in full conformance with orig-

inal formulations employing the splitting of individual, single partons, are based on the

universal soft and collinear dominance of QCD radiation. Similar to the original shower

algorithms, the emerging large logarithms occurring with each individual parton emission

can be resummed in a straightforward way through a Markovian process. This, in principle,

renders both formulations formally equivalent. On the other hand, however, showers based

on subtraction terms have the practical advantage that the conservation of four-momentum

is built in with particles that remain on their mass shell at any given point.2 It can be

2It is interesting to note that the latest refinements of the parton showers in Herwig and Pythia also
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anticipated that these features ultimately will allow for a more transparent merging with

multi-leg matrix elements and a drastically alleviated matching with full NLO calculations.

1.2 Short review of the Catani-Seymour subtraction method

The Catani-Seymour subtraction method has been introduced in [30] for massless partons

and it has been extended to massive partons in [31]. To fix the notation for the rest of the

paper, it will be briefly reviewed here.

The essence of this method is embedded in the dipole factorisation formula

|Mm+1|2 =
∑

i,j

∑

k 6=i,j

Dij,k +
∑

i,j

∑

a

Da
ij +

∑

a,i

∑

k 6=i

Dai
k +

∑

a,i

∑

b6=a

Dai,b + . . . . (1.1)

The individual dipole contributions D provide the correct approximation of the (m + 1)-

parton matrix element squared in the different singular regions of phase space.3 In each

term i, j and k denote final-state partons and a and b stand for initial-state partons.

The first sum always runs over the two particles to be combined, whereas the second sum

takes care of the spectators. Accordingly, the four terms correspond to the splitting of a

final-state parton accompanied by a final-state or initial-state spectator and emissions off

incoming particles in the presence of a final-state or an initial-state spectator, respectively.

Finally, the dots in the equation above denote some potential finite terms which do not

exhibit any divergence.

For the case of final-state emitters with a final-state spectator, for instance, the indi-

vidual dipole contributions read [30]

Dij,k =− 1

2pipj
〈m1, . . . , ĩj . . . , k̃, . . . ,m+1|Tk ·Tij

T2
ij

Vij,k|1, . . . , ĩj . . . , k̃, . . . ,m+1〉m, (1.2)

when all the involved partons are assumed to be massless. The occurring m-parton states

are constructed from the original (m+1)-particle matrix element by replacing the partons i

and j with the new parton ĩj, the emitter, and the original parton k with k̃, the spectator.

In the massless case, their momenta are given by

p̃µ
ij = pµ

i + pµ
j − yij,k

1 − yij,k
pµ

k and p̃µ
k =

1

1 − yij,k
pµ

k , (1.3)

where the dimensionless, Lorentz-invariant quantity yij,k is given by

yij,k =
pipj

pipj + pipk + pjpk

. (1.4)

It is simple to show exact four-momentum conservation, i.e. p̃µ
ij + p̃µ

k = pµ
i + pµ

j + pµ
k , with

all particles on their mass shell. In the matrix element on the right hand side of eq. (1.2),

the Tij , Tk are the colour charges of the emitter and spectator, respectively, and the Vij,k

put more emphasis on the notion of a colour-connected partner compensating recoils etc. [28, 29].
3Note that squared matrix elements shall always be understood as properly normalised with respect to

the colour degrees of freedom of incoming particles.
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are matrices in the emitter’s spin and colour space, responsible for its branching. The

operators Vij,k also depend on the dimensionless, Lorentz-invariant quantities

z̃i =
pipk

pipk + pjpk

=
pip̃k

p̃ij p̃k

and z̃j =
pjpk

pipk + pjpk

=
pj p̃k

p̃ij p̃k

= 1 − z̃i . (1.5)

For instance, for the case of a quark splitting in the final state with a final-state spectator,

i.e. qij → qi + gj , where s and s′ denote the spins of ĩj and i, respectively, and where the

subscripts label the momenta,

〈s|Vqigj ,k(z̃i, yij,k)|s′〉 = 8πµ2ǫαsCF

[
2

1 − z̃i(1 − yij,k)
− (1 + z̃i) − ǫ(1 − z̃i)

]
δss′ . (1.6)

Here, ǫ = (4 − d)/2, with d the number of dimensions. Similar expressions emerge for

the other QCD splittings or when masses are included. However, as a general property,

the matrices Vij,k do not become singular, if any of the scalar products pipj , pipk or pjpk

vanishes, and therefore the only soft or collinear divergences in the dipole terms Dij,k are

related to pipj → 0.

The collinear limit of the two final-state partons i and j originating from a splitting

ĩj → i + j is defined through their relative transverse momentum k⊥ → 0. This limit can

be investigated by decomposing the momenta as

pµ
i = zpµ +

−k2
⊥

z

nµ

2pn
+ kµ

⊥ , (1.7)

pµ
j = (1 − z)pµ +

−k2
⊥

1 − z

nµ

2pn
− kµ

⊥ , (1.8)

where the lightlike pµ defines the collinear direction and nµ is an auxiliary lightlike vector

that specifies the spacelike transverse momentum kµ
⊥, with k2

⊥ = −k2
⊥, through pk⊥ =

nk⊥ = 0. Then, in the collinear limit, the scalar product pipj reads

pipj = − k2
⊥

2z (1 − z)
, k2

⊥ → 0 , (1.9)

and the dipole variables are given by

yij,k → − k2
⊥

2z(1 − z)ppk
, z̃i = 1 − z̃j → z ,

p̃µ
k → pµ

k and p̃µ
ij → pµ . (1.10)

It can then be shown that in this limit the matrices Vij,k become proportional to the

Altarelli-Parisi splitting kernels,

Vij,k → 8πµ2ǫαs P̂(ij),i(z, k⊥; ǫ) . (1.11)

In this limit the only remaining dependence of the dipole contributions Dij,k on the spec-

tator k resides in its colour factor Tk and it can be shown that eq. (1.2) reproduces the

well-known universal collinear behaviour of the (m + 1)-parton matrix element,

〈m+1 1, . . . , i, . . . , j, . . . , m + 1||1, . . . , i, . . . , j, . . . , m + 1〉m+1

k⊥→0−→ 4πµ2ǫαs

pipj
〈m 1, . . . , ij, . . . , m+1|P̂(ij),i(z, k⊥; ǫ)|1, . . . , ij, . . . , m+1〉m , (1.12)
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where again, the kernel P̂ is a d-dimensional Altarelli-Parisi splitting function.

In contrast, the limit where pj becomes soft is given by pµ
j = λqµ with λ → 0 and qµ

some, in principle arbitrary, four-vector. In this limit, the dipole variables become

yij,k → 0 , z̃i = 1 − z̃j → 1 ,

p̃µ
k → pµ

k and p̃µ
ij → pµ

i , (1.13)

and Vij,k tends to

1

1 − z̃i(1 − yij,k)

λ→0−→ 1

λ
· pipk

(pi + pk)q
. (1.14)

Therefore,

λVij,k
λ→0−→ 16πµ2ǫαsT

2
ij

pipk

(pi + pk)q
. (1.15)

It can thus be shown that the well-known soft limit of the (m + 1)-parton matrix element

is recovered, namely

〈m+1 1, . . . , i, . . . , j, . . . , m + 1||1, . . . , i, . . . , j, . . . , m + 1〉m+1

λ→0−→−
∑

i,k 6=i

8πµ2ǫαs

λ2(piq)
〈m 1, . . . , ij, . . . , m+1|Tk ·Ti(pipk)

(pi+pk)q
|1, . . . , ij, . . . , m+1〉m.(1.16)

Taken together, these considerations and similar reasoning for the other dipole contri-

butions translate into the dipole formula, eq. (1.1), to provide a point-wise approximation

to the full (m + 1)-parton matrix element, which exactly recovers all the soft and collinear

divergences.

Before starting the discussion on the construction of a parton shower algorithm from

the Catani-Seymour dipole formula in section 2 the generalisation of eq. (1.9) to the mas-

sive case and the analogous result for the splitting of an initial-state parton shall be briefly

repeated.

First, re-consider the splitting ĩj → i + j from above. This time, however, both the

emitter and the splitting products are allowed to be massive, the corresponding mass shell

conditions read p2 = m2
ij, p2

i = m2
i and p2

j = m2
j . However, in order to avoid on-shell decays

it is required that mij ≤ mi + mj . The momenta pi and pj can then again be written in a

Sudakov parametrisation according to

pµ
i = zpµ +

− k2
⊥ − z2m2

ij + m2
i

z

nµ

2pn
+ kµ

⊥ , (1.17)

pµ
j = (1 − z)pµ +

−k2
⊥ − (1 − z)2m2

ij + m2
j

1 − z

nµ

2pn
− kµ

⊥ , (1.18)

with n2 = 0 and k⊥ perpendicular to both p and n. Identifying k2
⊥ = −k2

⊥ the invariant

mass of partons i and j is now given by

(pi + pj)
2 =

k2
⊥

z (1 − z)
+

m2
i

z
+

m2
j

1 − z
, k2

⊥ → 0 . (1.19)
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Accordingly, the collinear singularity is shielded when at least one of the two partons has

a finite mass.

Finally, consider the case when final-state parton i becomes collinear to an initial-state

parton a. This corresponds to the splitting a → ãi + i, with ãi the initial-state parton

that enters the m-parton process. Considering only massless initial states, all the partons

involved in the splitting are consistently taken to be massless. Decomposing the final-state

momentum pi according to

pµ
i = (1 − x)pµ

a +
−k2

⊥

1 − x

nµ

2pan
+ k⊥ , (1.20)

the collinear limit is reached for

papi =
k2
⊥

2(1 − x)
, k2

⊥ → 0 , (1.21)

with k2
⊥ the magnitude of the spacelike transverse momentum vector k⊥, namely k2

⊥ =

−k2
⊥. The definitions eq. (1.19) and eq. (1.21) constitute the basic relations for identifying

the transverse momentum vector for the different splitting types in terms of the respective

splitting variables used to describe the branchings, see section 3.

2. Construction of the algorithm

To formulate a parton shower algorithm based on the Catani-Seymour dipole formulae,

the corresponding splitting operators D that describe the emission of an additional parton

from an arbitrary m-parton state have to be analyzed and rewritten in a suitable form,

before they can be used for a showering algorithm. To this end, a number of issues has to

be resolved:

• First of all, only the four-dimensional expressions of the splitting kernels D will enter

the parton shower. In addition, spin correlations are neglected by employing the spin-

averaged form of the splitting kernels only. This manipulation is straightforward and

a detailed discussion is therefore not necessary. The resulting splitting kernels depend

on the actual configuration of emitters and spectators in the initial- and final state

and they will be listed in the corresponding parts of section 3.

• In order to keep the probabilistic notion enabling simulation, to use a Markovian

formulation for the showering process and to facilitate the hadronisation at the end

of the shower, issues concerning colour correlations have to be solved. While the

original Catani-Seymour dipole formulae consider all colour correlations, the shower

will account only for the leading terms in 1/Nc. This will be further discussed in

section 2.1.

• Also, the phase space factorisation and the corresponding combination procedure

is effectively inverted to construct the kinematics of the individual splittings. This

yields splitting kernels for 1 → 2 QCD branchings that allow for the inclusion of finite

– 8 –
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parton masses in quite a general way. Each splitting parton thereby is accompanied

by a single colour-connected spectator parton compensating the recoil of the splitting.

The only exception here are initial-state splittings in the presence of an initial-state

spectator, where the recoil is taken by all final-state partons of the event. The

introduction of the spectator allows to assemble the shower kinematics such that

four-momentum conservation can be ensured after each individual branching with all

external partons on their mass-shell. Accordingly, this parton shower algorithm can

be stopped at any intermediate stage as well as started again for a partially evolved

parton ensemble. However, the exact procedure for reconstructing the kinematics of

each splitting again depends on whether the emitter and spectator are in the initial-

or final state, respectively. The corresponding formulae are listed in section 3.

• The actual shower evolution variable specifying and ordering subsequent emissions is

chosen to be the transverse momentum between the splitting products for branching

final-state partons and the transverse momentum with respect to the beam for emis-

sions from the initial state, collectively denoted by k⊥. The physics underlying this

choice will be further detailed in section 2.2.

• Furthermore, choices have to be made concerning the scales entering the QCD running

coupling constant, αs, and the parton distribution functions when initial-state partons

are present. This will be discussed in section 2.3.

• Based on these considerations, appropriate Sudakov form factors are constructed

that determine the probability for a certain branching process not to occur for a

given range of the evolution variable, k⊥. These Sudakov form factors constitute

the basis of the actual Monte Carlo showering algorithm. Again, their specific form

depends on the details of emitter and spectator parton and they will thus be given

in corresponding parts of section 3, too.

• This section closes with some general considerations concerning the treatment of

parton masses, cf. section 2.4.

2.1 Colour factors and spectators

The starting point for every parton shower evolution is a given set of partons and their

momenta from a fixed-order matrix element calculation. In the large-Nc approximation a

colour flow can be assigned to each parton configuration. Since in most cases the initial ma-

trix element calculation is already summed and averaged over the colours of final and initial

partons, the assignment typically is performed a posteriori in different ways in different

codes. However, as a result the partons entering the parton shower after this assignment

have a well-defined colour, and, due to the large-Nc limit, one or two uniquely assigned

colour partners.4 Motivated by considerations on the colour dynamics for soft emissions in

4Representing the colour flow pictorially by coloured strings of partons, two configurations emerge,

namely open or closed strings. An open string consists of a colour-triplet state followed by colour octets and

ends with a colour anti-triplet. Mapping the colour flows, initial-state quarks (colour triplets) correspond to

– 9 –
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the Catani-Seymour formalism, in a corresponding shower formulation the spectator parton

accompanying a given splitting is colour-connected to the emitter parton. For the case of a

splitting gluon/gluino then there are always two possible colour partners, whereas splitting

(anti-)quarks/squarks will have only one spectator parton candidate. Following this reason-

ing, the initial partons will enter the parton shower stage in well-defined pairs of potential

emitters and spectators. The subsequent parton shower will not change this feature.

To formalise the treatment of colour inside the parton shower presented here, consider

the colour-operators present in the Catani-Seymour dipole contributions. In the large-Nc

limit, they are easily calculated for any m-parton state at the price of losing colour correla-

tions beyond 1/Nc. However, in this limit only two cases need to be considered. Indepen-

dent of the actual spectator flavour, the colour algebra for a splitting (anti-)quark/squark

yields,

−Tk ·Tij

T2
ij

→ 1 + O
(

1

N2
c

)
, (2.1)

whereas a splitting gluon/gluino results in

−Tk · Tij

T2
ij

→ 1

2
+ O

(
1

N2
c

)
. (2.2)

For convenience, these two results can be combined by introducing N spec
ij , the number of

possible spectators the emitting parton possesses, then

−Tk ·Tij

T2
ij

→ 1

N spec
ij

+ O
(

1

N2
c

)
. (2.3)

2.2 Ordering parameter

Having the individual splitting process under control, i.e. having at hand the corresponding

splitting kernel with all relevant colour factors and the way the kinematics of the emission is

constructed, the full showering algorithm with its sequence of splittings can be addressed.

While the individual splitting kernel properly takes into account the soft and collinear

divergent regions, in the parton shower itself these regions are cut away and, formally

speaking, combined with the virtual bits to yield a probabilistic description of the splitting

process. The cut on the soft and collinear region implies the emergence of corresponding

logarithms of the cut parameter, which the parton shower aims to resum. Technically, this

resummation is achieved by arranging the individual emissions in a Markov chain, treating

each emission on the same footing, and by ordering the emissions with some ordering

parameter. This has been detailed in textbooks such as [46]. In different parton shower

implementations, there are different ordering parameters realised, such as the invariant

mass of the splitting particle [47]–[49], the opening angle of the pair [28, 50], or their

final-state anti-quarks (colour anti-triplets), whereas initial-state anti-triplets can be treated as final-state

triplets. A closed colour string corresponds to a configuration of colour-octet partons only. Accordingly, the

end of a closed string is colour-connected to its beginning and therefore the whole colour string is invariant

under cyclic permutations of its individual constituents.
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relative transverse momentum [19, 29]. At the level of doubly leading logarithms, these

choices are all equivalent, but there are substantial differences on the level of next-to leading

logarithms, i.e. on the level of single soft logarithms. This is closely tied with the treatment

of quantum coherence effects [51]–[54], which are properly taken into account by ordering

subsequent emissions through their respective opening angles [50]. In [55] it has been shown

that another way of properly accounting for coherence effects is evolving in a dipole-like

picture with subsequent emissions ordered by transverse momenta.

In the implementation presented here, the parton shower will be ordered by transverse

momenta, i.e. by the k⊥ in eqs. (1.19) and (1.21). Apart from the proper treatment of quan-

tum coherence effects, this choice has additional benefits: First of all, as will be discussed in

the next section, cf. section 2.3, by ordering with k⊥ the ordering parameter also enters as

the relevant scale in the coupling constant and the parton distribution functions. Second,

the definition used here allows for a shower formulation on the basis of Lorentz-invariant

quantities, see for instance e.g. eqs. (1.4) and (1.5). Also, ordering by k⊥ immediately

implies that the parton shower cut-off is related to some minimal transverse momentum

necessary to resolve partons, which seems quite appealing in terms of the physical interpre-

tation of such a resolution criterion. Last but not least an ordering by transverse momenta

appears to allow for quite a straightforward merging of the parton shower with multi-leg

tree-level matrix elements in the spirit of [11, 12]. The merging method presented there is

based on Sudakov suppression weights for matrix elements, which are constructed from the

transverse momenta of their nodes, and on a vetoed parton shower respecting the minimal

scale of a k⊥-jet definition.

In the parton shower evolution each colour-singlet is separately evolved. To this end,

all emitter-spectator dipoles are iterated over and for each of those configurations a k⊥ is

chosen according to the corresponding Sudakov form factor. The dipole with the largest

k⊥ is selected to split according to the kinematics detailed below. As long as this largest

k⊥-value is larger than the infrared cut-off k⊥,0, the shower evolution will continue, and

this largest k⊥ of the current evolution step serves as the maximal scale for all dipoles in

the colour-singlet in the next splitting step.

2.3 Scales to be chosen

When discussing the details of a parton shower implementation, some care has to be taken

in the choice of various, in principle undetermined, occurring scales. There are a number

of choices to be made, namely:

• The evolution variable and the related evolution cut-off:

As already discussed in the previous section, in this implementation the relative

transverse momentum of the produced parton w.r.t. its emitter has been chosen as

the relevant evolution variable. It is given by eqs. (1.19) and (1.21). Correspond-

ingly, a cut-off has to be set as a tuning parameter, to stay away from phase-space

regions where the perturbative expansion for the running coupling is divergent. The

choice of this cut-off is dictated by two aspects. First of all, it seems to be more

attractive to try to assign as much phase space for particle creation to the, in princi-
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ple, well-understood perturbative parton shower rather than to a phenomenological

hadronisation approach such as the Lund string fragmentation [56, 57] or a cluster

model [58]–[60]. This implies that the cut-off should be as small as possible. On the

other hand, it is clear that perturbative QCD breaks down and loses its predictive

power at small scales. This is best exemplified by the infrared behaviour of the run-

ning coupling which exhibits a Landau pole at ΛQCD. As will be discussed in the

next item, since the running coupling in the shower is evaluated at a scale related

to k⊥, this feature of QCD prohibits cut-offs in the region of ΛQCD. Therefore, a

suitable choice seems to be a cut-off k⊥,0 of the order of 1GeV, sufficiently separated

from the Landau pole.

• The argument of the running coupling constant, µR:

In the previous item it has been already hinted at the choice typically made in parton

showers, to take the running coupling at scales of the order of k⊥. The reason for this

choice is that it incorporates and resums some of the higher-order corrections to the

splitting. Specifically, in this implementation the choice is to take µF.S.
R = µR = k⊥ if

the emitter is a final-state particle and µI.S.
R = µR = k⊥/2 if the emitter is a parton

in the initial state.5

• The argument of the parton density functions, µF :

Similar to the case of the running coupling constant, a choice has also been made

at which scale to take the parton distribution functions, if necessary. In parton

showers, there are typically two answers, namely to either again take the transverse

momentum or to use the virtual mass of the initial emitter. Here the choice again is

to use µF = k⊥.

2.4 General considerations on massive particles

Taking into account finite quark mass effects in the Standard Model (SM) clearly is of

importance when producing heavy quarks, bottom or top quarks, in a hard scattering

process. In addition, many extensions of the SM introduce new strongly-interacting heavy

particles, whose QCD radiation needs to be modeled to understand the patterns of particle

and energy flows in their production and eventual decays. Prime examples are scalar

quarks and gluinos in supersymmetric theories [61] or heavy excitations of the SM quark

and gluon fields in models with additional space-time dimensions [62]. While at lepton

colliders heavy objects only appear in the process’ final state, at hadron colliders charm

and bottom quarks can also constitute the partonic initial state. An example where these

are of phenomenological relevance is the associated production of heavy quarks and scalar

Higgs particles in supersymmetric models, which is a promising channel to gain deeper

insight into the mechanism of electroweak symmetry breaking, see for instance [63] and

references therein.

In the following section, QCD splitting operators will be derived, that fully take into

account finite masses of partons in the final state. This includes both emission from heavy

5The latter choice of an additional factor of 1/2 is motivated by the improved performance in the

description of the transverse momentum of the lepton pair in Drell-Yan processes.
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particles but also the splitting of gluons into heavy quarks such as charm or bottom. Split-

tings of gluons into heavier objects or branchings of heavy states into other heavy objects

are beyond the scope of this work as they are not well modeled by the soft or quasi-collinear

approximation and should rather be described with full matrix elements. For all the formu-

lae presented in section 3, the massless limit is smoothly obtained when setting the parton

masses to zero. This will be explicitly examined for some of the important results there.

Throughout this work, incoming QCD partons will always be treated as massless. The

leading logarithms that arise for emissions off incoming heavy quarks, logarithms of the type

(αs log(Q2/m2
Q))n, with Q2 the scale of the hard-scattering process and mQ the quark mass,

are summed to all orders in QCD when using heavy-quark parton distribution functions at

the factorisation scale µF ∼ Q and considering the incoming quarks as massless [64, 65]. A

scheme to consistently incorporate explicit masses for incoming heavy quarks, relying on

modified heavy-quark density functions [66], has recently been presented in [67].

3. Kinematics of the individual splittings

In the following sections, sections 3.1–3.4, the actual parton shower built on Catani-

Seymour subtraction terms is constructed. To this end, all combinations of initial- and

final-state emitter and spectator partons are considered in detail, following closely the

original publications on the subtraction method [30, 31]. First, the kinematic variables

characterising the individual splitting under consideration are discussed. Then the ex-

plicit form of the phase space element for the three-parton state under consideration is re-

expressed through the kinematic variables above, and their respective bounds are given. In

a next step, the polarisation-averaged splitting kernels for the respective emitter-spectator

configuration are listed. This allows to give the factorised form of matrix elements with one

additional parton in the soft and collinear limits of its production and the factorised form of

the corresponding differential cross section, which includes both matrix element and phase

space factorisation. From there, it is quite straightforward to deduce the actual Sudakov

form factor for the emitter-spectator configuration.6 Finally, the actual kinematics of the

splitting is constructed, which may slightly differ from the evolution parameters due to

mass effects. For each case then also the more familiar massless limit is briefly discussed.

In section 3.5 the QCD splitting functions for supersymmetric particles are presented.

3.1 Final-state emitter and final-state spectator

The first case to be investigated is when both the emitter and the spectator parton are

in the final state, cf. figure 1. Accordingly, the splitting {ĩj, k̃} → {i, j, k} has to be

studied. When considering processes without colour-charged initial-state particles, such as

6Note that some of the Catani-Seymour dipole functions may assume negative values in certain, non-

singular regions of phase space. This would spoil their probabilistic interpretation as splitting operators in

a parton cascade. Accordingly, for these phase-space regions the splitting probabilities are set to zero. It

has been tested that this happens typically with in a tiny, negligible fraction of events only. In any case,

once this parton shower is merged with the matrix elements it is anticipated that these events do not occur

any longer.
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ĩj

i

j

k

Vij,k

pk

pi

pj

Figure 1: Effective diagram for the splitting of a final-state parton connected to a final-state

spectator. The blob denotes the m-parton matrix element, and the outgoing lines label the final-

state partons participating in the splitting.

jet production in lepton-lepton collisions, this is the only QCD radiation process and thus

constitutes the basis of a corresponding final-state parton shower. However, the observed

factorisation of the differential cross section for producing an additional parton also holds in

the presence of initial-state partons, where only the additional branching channels discussed

below then have to be taken into account as well.

3.1.1 Massive case

In the most general case all partons involved in the splitting can have arbitrary masses, i.e.

p̃2
ij = m2

ij , p̃2
k = p2

k = m2
k, p2

i = m2
i and p2

j = m2
j , respectively. In order to avoid on-shell

decays, which should be described by their respective proper matrix element, only those

situations are considered, where mij ≤ mi + mj .

• Kinematics.

Exact four-momentum conservation is ensured by the requirement

p̃ij + p̃k = pi + pj + pk ≡ Q . (3.1)

The splitting is characterised by the dimensionless variables yij,k, z̃i and z̃j . They

are given by

yij,k =
pipj

pipj + pipk + pjpk

, z̃i = 1 − z̃j =
pipk

pipk + pjpk

. (3.2)

With these definitions the invariant transverse momentum of partons i and j, defined

in eq. (1.19), can be written as

k2
⊥ =

(
Q2 − m2

i − m2
j − m2

k

)
yij,k z̃i(1 − z̃i) − (1 − z̃i)

2m2
i − z̃2

i m2
j . (3.3)

For convenience, the rescaled parton masses

µn =
mn√
Q2

(n = i, j, k, ij) , (3.4)
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and the relative velocities between pi + pj and pi (pk), vij,i (vij,k),

vij,i =

√
(1 − µ2

i − µ2
j − µ2

k)
2y2

ij,k − 4µ2
i µ

2
j

(1 − µ2
i − µ2

j − µ2
k)yij,k + 2µ2

i

, (3.5)

vij,k =

√[
2µ2

k + (1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)

]2
− 4µ2

k

(1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)

, (3.6)

as well as the velocity between p̃ij and p̃k,

ṽij,k =

√
λ
(
1, µ2

ij , µ
2
k

)

1 − µ2
ij − µ2

k

, (3.7)

are introduced.

• Phase space.

In the case of a final-state emitter with a final-state spectator, the corresponding

three-parton phase space dΦ(pi, pj , pk;Q) must be analyzed. It exactly factorises

into a two-parton contribution dΦ(p̃ij, p̃k;Q) and a single-parton phase space factor

[dpi(p̃ij , p̃k)],

dΦ(pi, pj, pk;Q) = dΦ(p̃ij, p̃k;Q) [dpi(p̃ij , p̃k)]Θ(1 − µi − µj − µk) , (3.8)

where the latter is given by

[dpi(p̃ij, p̃k)] =
(p̃ij + p̃k)

2

16π2

(
1 − µ2

i − µ2
j − µ2

k

)2

√
λ(1, µ2

ij , µ
2
k)

(1 − yij,k) dyij,k dz̃i
dφ

2π
. (3.9)

Here and in the following, λ denotes the Källen function,

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) . (3.10)

The boundaries of the full, unconstrained, phase space read φ ∈ [0, 2π], whereas the

lower and upper limits for z̃i and yij,k are

z∓ =
2µ2

i + (1 − µ2
i − µ2

j − µ2
k)yij,k

2(µ2
i + µ2

j + (1 − µ2
i − µ2

j − µ2
k)yij,k)

(1 ∓ vij,ivij,k) , (3.11)

y− =
2µiµj

1 − µ2
i − µ2

j − µ2
k

, and y+ = 1 − 2µk (1 − µk)

1 − µ2
i − µ2

j − µ2
k

, (3.12)

respectively.
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• Splitting kernels.

The polarisation-averaged QCD splitting kernels 〈Vij,k〉 read

〈VQigj ,k(z̃i, yij,k)〉 = CF

{
2

1 − z̃i + z̃iyij,k
− ṽij,k

vij,k

(
1 + z̃i +

m2
i

pipj

)}
, (3.13)

〈Vgigj ,k(z̃i, yij,k)〉 = 2CA

{
1

1 − z̃i + z̃iyij,k
+

1

z̃i + yij,k − z̃iyij,k

+
z̃i (1 − z̃i) − z+z− − 2

vij,k

}
, (3.14)

〈VQiQj ,k(z̃i)〉 = TR
1

vij,k

{1 − 2 [z̃i (1 − z̃i) − z+z−]} . (3.15)

Here, eq. (3.13) describes the QCD splitting Q → Qg, of a massive quark Q, the case

of a splitting anti-quark is formally identical. The corresponding expressions for the

splitting g → gg, or g → QQ̄ are given in eqs. (3.14) and (3.15), respectively. Note

that in the above splitting kernels the free parameter κ that occurs in the full NLO

subtraction scheme [31] has been set to zero to obtain the simplest expressions for

the different 〈Vij,k〉.
It should be stressed here that the scalar product pipj present in eq. (3.13) can be

written solely in terms of the splitting variables and the scale k2
⊥:

pipj =
k2
⊥

2z̃i (1 − z̃i)
+

(1 − z̃i)m
2
i

2z̃i
+

z̃im
2
j

2(1 − z̃i)
. (3.16)

However, in eq. (3.13) the final-state gluon is massless and correspondingly m2
j = 0

such that the last term of eq. (3.16) vanishes in this specific case.

• Matrix element.

Using the above splitting functions, the full (m+1)-parton matrix element factorises

in the soft and collinear limit according to

|Mm+1|2 = |Mm|2
∑

ij

∑

k 6=ij

1

(pi + pj)2 − m2
ij

1

N spec
ij

8παs 〈Vij,k(z̃i, yij,k)〉 , (3.17)

cf. [30], where the sum covers all the possible emitter-spectator pairs. When com-

bining this with the (m + 1)-parton phase space a fully factorised expression for the

differential cross section is obtained, namely

dσ̂m+1 = dσ̂m

∑

ij

∑

k 6=ij

dyij,k

yij,k
dz̃i

dφ

2π

αs

2π

1

N spec
ij

J(yij,k)〈Vij,k(z̃i, yij,k)〉 , (3.18)

where the Jacobian

J(yij,k) =
1 − µ2

i − µ2
j − µ2

k√
λ(1, µ2

ij , µ
2
k)

1 − yij,k

1 +
µ2

i +µ2
j−µ2

ij

yij,k(1−µ2
i −µ2

j−µ2
k
)

(3.19)

emerges from the phase-space factors of eq. (3.9) combined with the propagator term

of eq. (3.17).
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• Sudakov form factor.

A first step toward the construction of the corresponding Sudakov form factor is

achieved by realising that the yij,k-integration in the equation above, eq. (3.18), can

be replaced by an integration over the ordering parameter, the transverse momentum,

according to

dyij,k

yij,k

=
dk2

⊥

k2
⊥

. (3.20)

Cutting the available phase space through the requirement of a minimal relative

transverse momentum squared k2
⊥ > k2

⊥,0 > 0 and some upper limit k2
⊥,max for the

splitting products i and j, the z̃i integration boundaries become

z−
(
k2
⊥,max,k

2
⊥,0

)
= Max


1

2


1 −

√√√√1 −
k2
⊥,0

k2
⊥,max


 , z−


 , (3.21)

z+

(
k2
⊥,max,k

2
⊥,0

)
= Min


1

2


1 +

√√√√1 −
k2
⊥,0

k2
⊥,max


 , z+


 , (3.22)

with z∓ taken from eq. (3.11). Having chosen a valid pair for k2
⊥ and z̃i this can then

easily be solved for yij,k,

yij,k =
1

Q2 − m2
i − m2

j − m2
k

(
k2
⊥

z̃i(1 − z̃i)
+

(1 − z̃i)m
2
i

z̃i
+

z̃im
2
j

1 − z̃i

)
. (3.23)

If the calculated yij,k fulfils the requirement yij,k ∈ [y−, y+], with y∓ defined in

eq. (3.12), a valid splitting has been constructed, i.e. a physical branching allowed by

phase space.

The Sudakov form factor corresponding to having no emission from one of the pro-

cess’ final-final dipoles between the maximum transverse momentum squared k2
⊥,max

and the infrared cut-off k2
⊥,0 reads

∆FF

(
k2
⊥,max,k

2
⊥,0

)
(3.24)

= exp


−
∑

ij

∑

k 6=ij

1

N spec
ij

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

z+∫

z−

dz̃i
αs(k

2
⊥)

2π
J(yij,k)〈Vij,k(z̃i, yij,k)〉


 .

As already advertised in section 2.3, the scale of the running coupling has thereby

been chosen equal to the current transverse momentum squared.

• Physical kinematics.

Having a valid set of splitting variables, the actual physical branching kinematics

must be constructed in order to fully specify the splitting {ĩj, k̃} → {i, j, k}. In the

most general case, both the emitter and the spectator parton are massive, prohibiting
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a simple Sudakov parametrisation of pi and pj in terms of light-like momenta p̃ij and

p̃k. Instead they are expressed in light-cone kinematics with massive base momenta.

The new spectator momentum is determined in the emitter-spectator centre-of-mass

frame,

pk =

√[
2µ2

k + (1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)

]2
− 4µ2

k
√

λ(1, µ2
ij , µ

2
k)

(
p̃k − 1

2

[
1 + µ2

k − µ2
ij

]
Q

)

+

[
1

2
(1 − µ2

i − µ2
j − µ2

k)(1 − yij,k) + µ2
k

]
Q . (3.25)

Then the situation is most easily discussed in a frame where Q−pk is at rest and the

momentum pk points along the z-direction. In this frame, the light-cone momenta of

Q − pk and pk can be written as

Q − pk =
(
M,M,~0

)
and pk =

(
mk ex,mk e−x,~0

)
. (3.26)

The ansatz for the light-cone momenta of the new emerging final-state partons reads

pi =
(
mi,⊥ ey,mi,⊥ e−y,~l⊥

)
, pj =

(
mj,⊥ ez,mj,⊥ e−z,−~l⊥

)
, (3.27)

with m⊥ being the transverse mass of the respective parton, defined according to

m⊥ =

√
m2 +~l2⊥ . (3.28)

The kinematics is fully determined through energy-momentum conservation and the

constraint

z̃i = 1 − z̃j =
pipk

pipk + pjpk
. (3.29)

Then,

~l2⊥ =

(
M2 + m2

i + m2
j

2M

)2

− m2
i −

(
M2 + m2

i + m2
j − 2M2z̃i

2M

(
cosh x

sinh x

))2

,(3.30)

and

cosh y =
M2 + m2

i − m2
j

2Mmi,⊥
, sinh y =

cosh x

sinh x

(
cosh y − Mz̃i

mi,⊥

)
, (3.31)

cosh z =
M2 − m2

i + m2
j

2Mmj,⊥
, sinh z =

cosh x

sinhx

(
cosh z − M(1 − z̃i)

mj,⊥

)
. (3.32)

Expressed through ordinary four-vectors the parton momenta in this frame read

pi = (mi,⊥ cosh y, l⊥ cos φ, l⊥ sin φ,mi,⊥ sinh y) , (3.33)

pj = (mj,⊥ cosh z,−l⊥ cos φ,−l⊥ sin φ,mj,⊥ sinh z) , (3.34)
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with the angle φ not fixed by the splitting and therefore uniformly distributed in the

transverse plane. The kinematics is completed by rotating and boosting back the

momenta pi, pj and pk into the laboratory frame.

If the spectator is massless, the new final-state momenta can alternatively be given

in a simple Sudakov parametrisation:

pi = z̃i p̃ij +
k2
⊥ − z̃2

i m2
ij + m2

i

z̃i 2p̃ij p̃k
p̃k + k⊥ , (3.35)

pj = (1 − z̃i) p̃ij +
k2
⊥ − (1 − z̃i)

2m2
ij + m2

j

(1 − z̃i) 2p̃ij p̃k

p̃k − k⊥ , (3.36)

pk =

(
(1 − µ2

i − µ2
j)(1 − yij,k)

1 − µ2
ij

)
p̃k . (3.37)

with the spacelike transverse-momentum vector k⊥ pointing in a direction perpen-

dicular to both the emitter and the spectator momentum.

3.1.2 Massless case

The case of a final-final splitting is considerably simpler in the massless limit, i.e. where all

occurring partons can be treated as massless, p̃2
ij = p̃2

k = p2
k = p2

i = p2
j = 0. In this case, of

course, the variables chosen to specify the splitting remain unchanged with respect to the

fully massive case. However, neglecting masses the ordering parameter reduces to

k2
⊥ = Q2yij,k z̃i(1 − z̃i) = 2p̃ij p̃k yij,k z̃i (1 − z̃i) , (3.38)

with the identification of Q2 = 2p̃ij p̃k this is identical with the transverse momentum

defined in eq. (1.9). The full phase space for the emission of an extra parton extends to

z̃i ∈ [0, 1], yij,k ∈ [0, 1], whereas φ again uniformly covers the interval [0, 2π].

In the massless limit also the spin averaged splitting kernels 〈Vij,k〉 simplify consider-

ably, namely to

〈Vqigj ,k(z̃i, yij,k)〉 = CF

{
2

1 − z̃i + z̃iyij,k

− (1 + z̃i)

}
, (3.39)

〈Vgigj ,k(z̃i, yij,k)〉 = 2CA

{
1

1 − z̃i + z̃iyij,k

+
1

z̃i + yij,k − z̃iyij,k

−2+z̃i (1−z̃i)

}
, (3.40)

〈Vqiqj ,k(z̃i)〉 = TR {1 − 2z̃i (1 − z̃i)} . (3.41)

When combining the factorised form of the (m + 1)-parton phase space,

dΦm+1 =dΦm

∑

ij

∑

k 6=ij

2pipj

16π2

dyij,k

yij,k

dz̃i
dφ

2π
(1−yij,k)Θ(z̃i (1−z̃i))Θ(yij,k(1−yij,k)),(3.42)

with the corresponding expression for the (m + 1)-parton matrix element,

|Mm+1|2 = |Mm|2
∑

ij

∑

k 6=ij

1

2pipj

1

N spec
ij

8παs 〈Vij,k(z̃i, yij,k)〉 , (3.43)
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the fully factorised form of the (m + 1)-parton differential cross section is recovered

dσ̂m+1 = dσ̂m

∑

ij

∑

k 6=ij

dyij,k

yij,k
dz̃i

dφ

2π

αs

2π

1

N spec
ij

J(yij,k)〈Vij,k(z̃i, yij,k)〉 . (3.44)

However, in this case, the Jacobian J(yij,k) simply is given by

J(yij,k) = 1 − yij,k . (3.45)

With the transverse momentum defined according to eq. (3.38) again the identity

dyij,k

yij,k
=

dk2
⊥

k2
⊥

, (3.46)

is found. Choosing k2
⊥ as the evolution variable with its lower cut-off given by k2

⊥,0 and

the upper limit by k2
⊥,max the z̃i integration range reduces to

z∓(k2
⊥,max,k

2
⊥,0) =

1

2


1 ∓

√√√√1 −
k2
⊥,0

k2
⊥,max


 . (3.47)

Given a valid set of k2
⊥ and z̃i this can be solved for

yij,k =
k2
⊥

Q2z̃i(1 − z̃i)
, (3.48)

completing the determination of the splitting variables. Making the necessary replacements

when going from massive partons to massless the Sudakov form factor given in eq. (3.24)

yields the corresponding non-branching probability. The massless kinematics can be de-

rived from eqs. (3.35)–(3.37) by setting µij = µi = µj = 0, accordingly

pi = z̃i p̃ij +
k2
⊥

z̃i 2p̃ij p̃k
p̃k + k⊥ , (3.49)

pj = (1 − z̃i) p̃ij +
k2
⊥

(1 − z̃i) 2p̃ij p̃k
p̃k − k⊥ , (3.50)

pk = (1 − yij,k) p̃k . (3.51)

3.2 Final-state emitter and initial-state spectator

In this section, the case of a final-state emission with the spectator being an initial-state

parton a is worked out. The splitting schematically reads {ĩj, ã} → {i, j, a}, for a pictorial

representation of the configuration, cf. figure 2. This configuration emerges for the first

time when considering deep-inelastic lepton scattering (DIS), where one incoming line

carries colour charge, or in configurations like vector boson fusion, with no colour exchange

between the two hadrons. However, besides the singularity related to a final-state splitting,

there is also a singular region for the splitting of the initial-state QCD parton, which needs

to be included in such processes. This situation will be investigated in detail in section 3.3.
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ĩj

i

j

a

Va
ij

pa

pi

pj

Figure 2: Sketch of the splitting of a final-state parton accompanied by an initial-state spectator.

The blob denotes the m-parton matrix element. The incoming and outgoing lines label the initial-

and final-state partons, respectively.

3.2.1 Massive case

The initial line is always assumed to be massless, however, all final-state particles can be

massive. Accordingly,

p̃2
ij = m2

ij p̃2
a = p2

a = 0 p2
i = m2

i , p2
j = m2

j . (3.52)

To avoid on-shell decays being described incorrectly, again mij ≤ mi+mj should hold true.

• Kinematics.

Four-momentum conservation is incorporated through the condition

p̃ij − p̃a = pi + pj − pa ≡ Q . (3.53)

Defining the Lorentz-invariants

xij,a =
pipa + pjpa − pipj + 1

2

(
m2

ij − m2
i − m2

j

)

pipa + pjpa
, (3.54)

z̃i =
pipa

pipa + pjpa
, z̃j =

pjpa

pipa + pjpa
= 1 − z̃i , (3.55)

the relative transverse momentum of the new emerging final-state partons is given by

k2
⊥ = 2p̃ap̃ij

1 − xij,a

xij,a
z̃i (1 − z̃i) − (1 − z̃i)

2m2
i − z̃2

i m
2
j . (3.56)

• Phase space.

The factorised form of the three-parton phase space reads [31]

dΦ(pi, pj ;Q + pa) =

1∫

0

dxdΦ(p̃ij;Q + xpa) [dpi(p̃ij ; pa, x)]Θ(x+ − x) , (3.57)

with the single-parton phase space factor

[dpi(p̃ij ; pa, x)] =
2p̃ijpa

16π2

dφ

2π
dz̃i dxij,a δ(x − xij,a) , (3.58)
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and the integration boundaries

x− = 0 , x+ = 1 + µ2
ij − (µi + µj)

2 , (3.59)

z∓ =
1 − x + µ2

ij + µ2
i − µ2

j ∓
√

(1 − x + µ2
ij − µ2

i − µ2
j)

2 − 4µ2
i µ

2
j

2(1 − x + µ2
ij)

. (3.60)

Here, again rescaled parton masses have been introduced,

µn =
mn√

2p̃ij p̃a/xij,a

(n = i, j, ij) . (3.61)

• Splitting kernels.

The polarisation-averaged QCD dipole splitting kernels 〈Va
ij(z̃i, xij,a)〉 read

〈Va
Qigj

(z̃i, xij,a)〉 = CF

{
2

1 − z̃i + (1 − xij,a)
− (1 + z̃i) −

m2
i

pipj

}
, (3.62)

〈Va
gigj

(z̃i, xij,a)〉 = 2CA

{
1

1 − z̃i + (1 − xij,a)
+

1

z̃i + (1 − xij,a)
− 2 + z̃i (1 − z̃i)

}
,

(3.63)

〈Va
QiQj

(z̃i)〉 = TR {1 − 2(z+ − z̃i)(z− − z̃i)} . (3.64)

The scalar product of the a priori unknown momenta pi and pj in eq. (3.62) can again

be expressed according to eq. (3.16). The two functions 〈Va
Qigj

〉 and 〈Va
gigj

〉 can take

negative values in non-singular regions of the emission phase space. Here they are

explicitly set equal to zero instead.

• Matrix element.

Combining the (m + 1)-parton phase space with the factorised form of the matrix

element,

|Mm+1|2 = |Mm|2
∑

ij

∑

a

1

(pi+pj)2 − m2
ij

1

N spec
ij

1

xij,a
8παs〈Va

ij(z̃i, xij,a)〉, (3.65)

one obtains the fully differential cross section for the emission of one additional parton

in that configuration

dσ̂m+1 = dσ̂m

∑

ij

∑

a

dxij,a

xij,a
dz̃i

dφ

2π

αs

2π

1

N spec
ij

1

1 − xij,a
〈Va

ij(z̃i, xij,a)〉 , (3.66)

where the sum covers all the possible colour-connected emitter-spectator pairings.

The Jacobian of the variable transformation in this case reads

J(xij,a) =
1

1 − xij,a
. (3.67)

Taking into account that the initial parton actually stems from a hadronic initial

state, a corresponding parton distribution function (PDF) emerges. Absorbing it

into the Jacobian yields

J̃(xij,a;µ
2
F ) =

1

1 − xij,a

fa(ηa/xij,a, µ
2
F )

fa(ηa, µ2
F )

. (3.68)
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Here, ηa is the momentum fraction of the spectator parton a and fa(ηa, µ
2
F ) the cor-

responding hadronic PDF evaluated at some scale µ2
F . In section 2.3 this scale has

been set to µF = k⊥. The parton distribution function fa(ηa/xij,a, µ
2
F ) corresponds

to the new incoming momentum and is also evaluated at scale µ2
F .

• Sudakov form factor.

Note that eq. (3.56) implies that

dxij,a

xij,a
= (1 − xij,a)

dk2
⊥

k2
⊥

. (3.69)

With k2
⊥ taken as the evolution scale with an upper limit k2

⊥,max and the cut-off k2
⊥,0

the z̃i integration boundaries therefore are given by

z−
(
k2
⊥,max,k

2
⊥,0

)
= Max


1

2


1 −

√√√√1 −
k2
⊥,0

k2
⊥,max


 , z−


 , (3.70)

z+

(
k2
⊥,max,k

2
⊥,0

)
= Min


1

2


1 +

√√√√1 −
k2
⊥,0

k2
⊥,max


 , z+


 (3.71)

with z± given in eq. (3.59). Having determined k2
⊥ and z̃i the variable xij,a is calcu-

lated through

xij,a = 1 −
k2
⊥ + (1 − z̃i)

2m2
i + z̃2

i m
2
j − z̃i(1 − z̃i)(m

2
ij − m2

i − m2
j)

k2
⊥ + (1 − z̃i)2m

2
i + z̃2

i m
2
j + z̃i(1 − z̃i)(Q2 + 2m2

i + 2m2
j)

, (3.72)

and has to fulfil the condition

xij,a ∈ [ηa/ηmax , x+] (3.73)

to yield a valid branching. Here, ηmax corresponds to the maximal allowed Bjørken-x

for the PDF (typically, ηmax = 1). Having at hand all ingredients, the Sudakov form

factor associated to the splitting of a final-state parton with an initial-state spectator

reads

∆FI(k
2
⊥,max,k

2
⊥,0) (3.74)

= exp


−

∑

ij

∑

a

1

N spec
ij

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

z+∫

z−

dz̃i
αs(k

2
⊥)

2π

fa(ηa/xij,a,k
2
⊥)

fa(ηa,k
2
⊥)

〈Va
ij(z̃i, xij,a)〉


 .

• Physical kinematics.

The actual branching kinematics can be given in a Sudakov parametrisation

pi = z̃i p̃ij +
k2
⊥ + m2

i − z̃2
i m2

ij

z̃i 2p̃ij p̃a
p̃a + k⊥ , (3.75)

pj = (1 − z̃i) p̃ij +
k2
⊥ + m2

j − (1 − z̃i)
2 m2

ij

(1 − z̃i) 2p̃ij p̃a
p̃a − k⊥ , (3.76)
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They are evaluated in the Breit-frame of the emitter and spectator with the spacelike-

k⊥ being perpendicular to both the momenta. After the splitting the spectator re-

mains parallel to p̃a but is rescaled according to

pa =
1

xij,a
p̃a . (3.77)

3.2.2 Massless case

The modifications emerging in the massless limit are briefly discussed. The splitting vari-

able xij,a simplifies to

xij,a =
pipa + pjpa − pipj

pipa + pjpa
, (3.78)

whereas the momentum fractions z̃i and z̃j are still defined according to eq. (3.55). The

invariant spacelike transverse momentum is simplified and reads

k2
⊥ = 2p̃ap̃ij

1 − xij,a

xij,a
z̃i (1 − z̃i) . (3.79)

While the g → gg splitting function remains the same, the mass dependent terms drop

out in the q → qg and g → qq kernels,

〈Va
qigj

(z̃i, xij,a)〉 = CF

{
2

1 − z̃i + (1 − xij,a)
− (1 + z̃i)

}
, (3.80)

〈Va
qiqj

(z̃i)〉 = TR {1 − 2z̃i (1 − z̃i)} . (3.81)

Incorporating the factorisation of the (m + 1)-parton matrix element and the corre-

sponding phase space the fully differential (m + 1)-parton cross section is still given by

eq. (3.66), with the appropriate Jacobian for hadronic initial states. In the massless limit

the phase-space boundaries are no longer constrained through finite mass terms, and there-

fore extend to

xij,a, z̃i ∈ [0, 1] . (3.82)

Eq. (3.79) still implies that

dxij,a

xij,a
= (1 − xij,a)

dk2
⊥

k2
⊥

. (3.83)

When evolving in k2
⊥ from k2

⊥,max and asking for a minimum separation k2
⊥,0 the allowed

z̃i range is reduced to

z̃i ∈


1

2


1 −

√√√√1 −
k2
⊥,0

k2
⊥,max


 ,

1

2


1 +

√√√√1 −
k2
⊥,0

k2
⊥,max




 (3.84)

in the massless case. The expression of the Sudakov from factor, eq. (3.74), of course

remains unaltered.
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ãi

a i

k

Vai
k

pk

pa
pi

Figure 3: Splitting of an initial-state parton accompanied by a final-state spectator. The blob

denotes the m-parton matrix element. The incoming and outgoing lines label the initial- and

final-state partons, respectively.

The kinematics of the new final-state partons simplify to

pi = z̃i p̃ij +
k2
⊥

z̃i 2p̃ij p̃a
p̃a + k⊥ , (3.85)

pj = (1 − z̃i) p̃ij +
k2
⊥

(1 − z̃i) 2p̃ij p̃a
p̃a − k⊥ , (3.86)

with k⊥ still being perpendicular to both the emitter and the spectator momentum. The

new spectator momentum is still given by

pa =
1

xij,a
p̃a , (3.87)

with xij,a taken from eq. (3.78).

3.3 Initial-state emitter and final-state spectator

The case of an initial-state parton branching (ãi), accompanied by a final-state spectator

(k̃) is sketched in figure 3. This accounts for the situation where the emitter and the

spectator parton studied in section 3.2 exchange their rôles.

3.3.1 Massive case

As stated above, treating initial-state particles as massless, final-state particles emitted

from the initial state are assumed massless as well, the spectator mass, however, is arbitrary.

Accordingly, the momenta involved in the splitting {ãi, k̃} → {a, i, k} have to fulfil the

mass-shell relations

p̃2
ai = p2

i = p2
a = 0 , p̃2

k = p2
k = m2

k . (3.88)

and the momentum conservation condition

p̃k − p̃ai = pi + pk − pa ≡ Q . (3.89)
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• Kinematics.

The splitting can be specified by the variables

xik,a =
pipa + pkpa − pipk

pipa + pkpa
, ui =

pipa

pipa + pkpa
. (3.90)

The transverse momentum squared parametrising the singular region where the emit-

ted parton i becomes collinear with the initial-state parton a then reads

k2
⊥ = 2p̃aip̃k

1 − xik,a

xik,a
ui(1 − ui) . (3.91)

To allow for a more compact notation, the rescaled spectator mass

µk =
mk√

2p̃aip̃k/xik,a

(3.92)

is introduced.

• Splitting kernels.

The QCD splitting kernels, taking into account possible non-zero spectator masses,

read

〈Vqagi

k (xik,a, ui)〉 = CF

{
2

1 − xik,a + ui
− (1 + xik,a)

}
, (3.93)

〈Vqaqi

k (xik,a)〉 = CF

{
xik,a + 2

1 − xik,a

xik,a
− 2µ2

k

xik,a

ui

1 − ui

}
, (3.94)

〈Vgagi

k (xik,a, ui)〉 = 2CA

{
1

1 − xik,a + ui
+

1 − xik,a

xik,a
− 1

+xik,a(1 − xik,a) −
µ2

k

xik,a

ui

1 − ui

}
, (3.95)

〈Vgaqi

k (xik,a)〉 = TR {1 − 2xik,a(1 − xik,a)} . (3.96)

Note that 〈Vqagi

k 〉 can turn negative outside the singular region and is set to zero for

those rare cases.

• Phase space.

The three-parton phase space is again obtained by a convolution of a two-parton

piece and a single-parton part,

dΦ(pi, pk;Q + pa) =

1∫

0

dxdΦ(p̃k;Q + xpa) [dpi(p̃k; pa, x)] , (3.97)

where

[dpi(p̃k; pa, x)] =
d4pi

2π
δ(p2

i )Θ(x)Θ(1 − x) δ(x − xik,a)
1

1 − ui
, (3.98)

or, more conveniently,

[dpi(p̃k; pa, x)] =
2p̃kpa

16π2

dφ

2π
dxik,aduiΘ(ui(1 − ui))Θ(x(1 − x))δ(x − xik,a). (3.99)
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The upper limit for the ui-integration contains a dependence on the spectator mass,

u+ =
1 − xik,a

1 − xik,a + µ2
k

. (3.100)

• Matrix element.

Using the factorisation property of the (m + 1)-parton matrix element

|Mm+1|2 = |Mm|2
∑

ai

∑

k

1

2papi

1

N spec
ai

1

xik,a

8παs 〈Vai
k (xik,a, ui)〉 (3.101)

in the soft and collinear limits and the relation

2p̃kpa

2papi
=

1

ui
(3.102)

the (m + 1)-parton fully differential cross section reads

dσ̂m+1 = dσ̂m

∑

ai

∑

k

dui

ui
dxik,a

dφ

2π

αs

2π

1

N spec
ai

1

xik,a
〈Vai

k (xik,a, ui)〉 . (3.103)

The integration range of the variables ui and xik,a is [0, u+] and [0, 1], respectively,

and [0, 2π] for φ. The Jacobian

J(xik,a) =
1

xik,a
(3.104)

for the parton matrix element again is changed in hadronic interactions to include

the effect of the PDFs, such that

J̃(xik,a;µ
2
F ) =

1

xik,a

fa(ηai/xik,a, µ
2
F )

fai(ηai, µ2
F )

, (3.105)

where again, in the implementation here the choice for the factorisation scale is

µF = k⊥, cf. section 2.3. Note that the Jacobian takes into account not only a

change in Bjørken-x but also a possible flavour change in the process’ initial state.

• Sudakov form factor.

The integration over ui in eq. (3.103) can be replaced by an integration over k2
⊥

according to

dui

ui
=

1 − ui

1 − 2ui

dk2
⊥

k2
⊥

. (3.106)

The arising Jacobian is combined with the function J̃(xik,a;µ
2
F ) to

J̃(xik,a, ui;µ
2
F ) =

1 − ui

1 − 2ui

1

xik,a

fa(ηai/xik,a, µ
2
F )

fai(ηai, µ2
F )

. (3.107)

With k2
⊥ > 0 as the evolution variable and its cut-off being k2

⊥,0 the xik,a phase-space

boundaries are

xik,a ∈
[

ηai

ηmax
,

Q2

Q2 + 4k2
⊥,0

]
, (3.108)
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with ηmax the maximal allowed Bjørken-x of the PDF. With k2
⊥ and xik,a given, ui

can be calculated and yields

ui =
1

2

(
1 −

√

1 − 4k2
⊥xik,a

Q2(1 − xik,a)

)
. (3.109)

When ui ≤ u+ an allowed branching is found. Thus the Sudakov form factor for

having no emission from an initial-state parton accompanied by a final-state spectator

between scales k2
⊥,max and k2

⊥,0 can be written down,

∆IF(k2
⊥,max,k

2
⊥,0)

= exp


−
∑

ai

∑

k

1

N spec
ai

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

x+∫

x−

dxik,a

αs(k
2
⊥/4)

2π
J̃(xik,a, ui;k

2
⊥)〈Vai

k (xik,a, ui)〉


.

(3.110)

• Physical kinematics.

The new initial-state particle a remains parallel to the original initial-state parton,

and is just rescaled by the splitting variable xik,a such that

pa =
1

xik,a
p̃ai . (3.111)

The two final-state momenta are most conveniently evaluated in the rest-frame of

Q + pa with pa pointing along the positive z-axis. The corresponding light-cone

momenta read

Q + pa =
(
M,M,~0

)
and pa =

(
2Ea, 0,~0

)
. (3.112)

Note that the massless vector pa only has a light-cone +-component, given by twice

the energy of the parton. For pi and pk the ansatz

pi =
(
l⊥ ey, l⊥ e−y,~l⊥

)
, pk =

(
mk,⊥ ez ,mk,⊥ e−z,−~l⊥

)
, (3.113)

is used, with m⊥ being the transverse mass. Besides the energy- and momentum--

conservation requirement the momenta are constrained by the splitting variables,

ui =
pipa

(pi + pk)pa
=

l⊥e−y

M
. (3.114)

yielding

~l2⊥ =
(
M2 − m2

k

)
ui − M2u2

i , (3.115)

for the transverse momentum squared. This equals the physical transverse momen-

tum squared of parton i, k2
⊥. Employing the relations

cosh y =
M2 − m2

k

2Ml⊥
, sinh y =

1

2

(
l⊥

Mui
− Mui

l⊥

)
, (3.116)

cosh z =
M2 + m2

k

2Mmk,⊥
, sinh z =

1

2

(
mk,⊥

M(1 − ui)
− M(1 − ui)

mk,⊥

)
, (3.117)
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Figure 4: Schematical view of the splitting of an initial-state parton with an initial-state parton

as spectator. The blob denotes the m-parton matrix element. Incoming and outgoing lines label

the initial- and final-state partons, respectively.

the four-momenta of the final-state partons, in the frame specified above, read

pi = (l⊥ cosh y, l⊥ cos φ, l⊥ sin φ, l⊥ sinh y) , (3.118)

pk = (mk,⊥ cosh z,−l⊥ cos φ,−l⊥ sin φ,mk,⊥ sinh z) . (3.119)

Again, φ has been uniformly distributed in the transverse plane. The kinematics is

completed by rotating and boosting the momenta pa, pi and pk back in the laboratory

frame.

3.3.2 Massless case

The massless limit of the scenario above, initial-state splittings accompanied by final-state

spectators, {ãi, k̃} → {a, i, k}, corresponds to neglecting the spectator mass, p̃2
k = p2

k = 0.

Apart from that, the splitting variables remain unchanged and the dependence on mk, of

course, disappears in the corresponding phase space boundaries.

Dropping the explicit mass terms present in 〈Vqaqi

k (xik,a)〉 and 〈Vgagi

k (xik,a, ui)〉 given

in eqs. (3.94) and (3.95), respectively, the factorised form of the fully differential cross

section can completely be taken over.

Neglecting the finite spectator masses the splitting kinematics is significantly simplified.

They are given by

pa =
1

xik,a

p̃ai , (3.120)

pi = (1 − ui)
1 − xik,a

xik,a

p̃ai + ui p̃k + k⊥ , (3.121)

pk = ui
1 − xik,a

xik,a

p̃ai + (1 − ui) p̃k − k⊥ , (3.122)

and they are conveniently evaluated in the emitter-spectator Breit-frame with k⊥ perpen-

dicular to both the emitter and the spectator.

3.4 Initial-state emitter and initial-state spectator

The last scenario to be studied is the splitting of an initial-state particle ãi, with the

spectator b being an initial-state parton as well, cf. figure 4. This type of branching occurs
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when considering hadron-hadron collisions, where both the initial-state particles are colour

charged and therefore can be colour connected. The simplest example for this configuration

is the lowest order Drell-Yan process, where both the incoming quark and anti-quark can

serve as emitter and spectator.

In contrast to all other cases discussed before, it turns out to be convenient to preserve

the spectator momentum pb in this branching. Since also the emitter momentum remains

parallel to pa,

p̃ai = xi,ab pa , with xi,ab =
papb − pipa − pipb

papb

, (3.123)

the transverse momentum of the emitted parton, pi, has to be balanced by all other final-

state momenta kj . This does not only include the QCD partons, but all non-QCD particles,

e.g. leptons, as well.

• Kinematics.

Defining the variable

ṽi =
pipa

papb

(3.124)

the transverse momentum squared of parton i is given by

k2
⊥ = 2p̃aipb ṽi

1 − xi,ab − ṽi

xi,ab

. (3.125)

The four-momenta of the m-parton ensemble fulfil

p̃ai + pb −
m∑

j=1

k̃j = 0 , (3.126)

correspondingly the full set of m + 1 particles has to satisfy

pa + pb −
m∑

j=1

kj − pi = 0 . (3.127)

• Splitting kernels.

The polarisation-averaged splitting kernels 〈Vai,b〉 depend on xi,ab only and read

〈Vqagi,b(xi,ab)〉 = CF

{
2

1 − xi,ab
− (1 + xi,ab)

}
, (3.128)

〈Vqaqi,b(xi,ab)〉 = CF

{
xi,ab + 2

1 − xi,ab

xi,ab

}
, (3.129)

〈Vgagi,b(xi,ab)〉 = 2CA

{
1

1 − xi,ab
+

1 − xi,ab

xi,ab
− 1 + xi,ab(1 − xi,ab)

}
, (3.130)

〈Vgaqi,b(xi,ab)〉 = TR {1 − 2xi,ab(1 − xi,ab)} . (3.131)
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• Phase space.

The final-state phase space can be written as follows [31]

dΦ(pi, k1, . . . ; pa + pb) =

1∫

0

dxdΦ(k̃1, . . . ;xpa + pb) [dpi(pa, pb, x)] , (3.132)

with

[dpi(pa, pb, x)] =
2papb

16π2

dφ

2π
dxi,abdṽiΘ(x(1−x))Θ(ṽi)Θ

(
1− ṽi

1 − x

)
δ(x−xi,ab), (3.133)

where φ is the polar angle in the plane perpendicular to pa and pb.

• Matrix element.

Combining this with the expression for the (m + 1)-parton matrix element

|Mm+1|2 = |Mm|2
∑

ai

∑

b6=ai

1

2papi

1

N spec
ai

1

xi,ab
8παs 〈Vai,b(xi,ab)〉 (3.134)

the differential cross section becomes

dσ̂m+1 = dσ̂m

∑

ai

∑

b6=ai

dṽi

ṽi
dxi,ab

dφ

2π

αs

2π

1

N spec
ai

1

xi,ab
〈Vai,b(xi,ab)〉 , (3.135)

where 1 − xi,ab − ṽi > 0 has to hold. The Jacobian can be read off as

J(xi,ab) =
1

xi,ab

, (3.136)

or, including again the PDFs,

J̃(xi,ab;µ
2
F ) =

1

xi,ab

fa(ηai/xi,ab, µ
2
F )

fai(ηai, µ
2
F )

. (3.137)

• Sudakov form factor.

Regarding the transverse momentum given by eq. (3.125) the identity

dṽi

ṽi
=

1 − xi,ab − ṽi

1 − xi,ab − 2ṽi

dk2
⊥

k2
⊥

, (3.138)

can be employed to replace the ṽi integration with a k2
⊥-integral. The resulting

Jacobian, combined with J̃(xi,ab;µ
2
F ), amounts to

J̃(xi,ab, ṽi;µ
2
F ) =

1 − xi,ab − ṽi

1 − xi,ab − 2ṽi

1

xi,ab

fa(ηai/xi,ab, µ
2
F )

fai(ηai, µ2
F )

. (3.139)

When evolving in k2
⊥ the dependence of the xi,ab-integration boundaries on the cut-off

k2
⊥,0 read

xi,ab ∈
[

ηai

ηmax
,

2p̃apb

2p̃apb + 4k2
⊥,0

]
. (3.140)
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ṽi can be calculated from k2
⊥ and xi,ab,

ṽi =
1 − xi,ab

2

(
1 −

√

1 − 2k2
⊥xi,ab

p̃apb(1 − xi,ab)2

)
. (3.141)

The Sudakov form factor then reads

∆II(k
2
⊥,max,k

2
⊥,0) (3.142)

= exp


−
∑

ai

∑

b6=ai

1

N spec
ai

k2
⊥,max∫

k2
⊥,0

dk2
⊥

k2
⊥

x+∫

x−

dxi,ab

αs(k
2
⊥/4)

2π
J̃(xi,ab, ṽi;k

2
⊥)〈Vai,b(xi,ab)〉


 .

• Physical kinematics.

The momenta of the (m + 1)-parton ensemble, expressed through the emitter and

spectator momentum and the momenta of all other final-state particles of the m-

parton process, read

pa =
1

xi,ab
p̃ai , (3.143)

pi =
1 − xi,ab − ṽi

xi,ab
p̃ai + ṽi pb + k⊥ , (3.144)

kj = Λ(p̃ai + pb, pa + pb − pi) k̃j , (3.145)

with k⊥/
√

k2
⊥ uniformly distributed in the transverse plane and Λ(p̃ai + pb, pa + pb −

pi) = Λ(K̃,K) being a proper Lorentz transformation given by

Λµ
ν(K̃,K) = gµ

ν − 2 (K̃ + K)µ (K̃ + K)ν

(K̃ + K)2
+

2KµK̃ν

K̃2
. (3.146)

Accordingly, the full set of final-state momenta compensates for the transverse mo-

mentum of pi, although they do not participate in the splitting.

3.5 SUSY QCD splitting functions

In the minimal supersymmetric extension of the Standard Model the sector of strongly

interacting particles is extended by the superpartners of the ordinary quark- and gluon-

fields [61]. The new particles participating in the strong interaction are the scalar-quarks,

called squarks and the gluino. While the former are colour-triplets the gluino is a Majorana

fermion in the adjoint representation, a colour-octet.

In order to be consistent with todays experimental (non-)observations the assumed

SUSY particles have to be rather heavy. This renders the massless limit for these fields

not applicable when describing their QCD interactions at the energies of the forthcoming

colliders. Based on that argument it is beyond the present scope to describe possible

branchings like g → q̃q̃∗, g → g̃g̃ in a quasi-collinear limit. Rather, they are appropriately

described using exact matrix element methods, as discussed e.g. in [68, 69].
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�q̃, q̃∗

g

q̃, q̃∗

�g̃
g

g̃

Figure 5: The SUSY QCD vertices corresponding to gluon emission off (anti-)squarks and gluinos.

Since the spin and the flavour of the spectator parton do not enter the splitting func-

tions, the branchings of the Standard Model particles are not altered in supersymmetric

extensions. The only SUSY QCD splittings that appear to be relevant in the context of

a parton shower formulation are related to the emission of a gluon off a squark or anti-

squark and off a gluino, cf. figure 5. Further, assuming that supersymmetric particles do

not appear as partonic initial states those are solely final-state splittings. The associated

spectator, however, can be either in the final state or in the initial state.

Due to its fermionic nature the splitting functions involving gluinos are equal to the

corresponding splittings of massive quarks, cf. eq. (3.13) and eq. (3.62), only the colour

factors have to be adapted from CF to CA.

The kernel of the branching q̃ → q̃g with the spectator also in the final state reads

〈Vq̃igj ,k(z̃i, yij,k)〉 = CF

{
2

1 − z̃i + z̃iyij,k
− ṽij,k

vij,k

(
2 +

m2
i

pipj

)}
, (3.147)

where all the variables have been defined in section 3.1.1. If the spectator is in the initial

state this becomes

〈Va
q̃igj

(z̃i, xij,a)〉 = CF

{
2

1 − z̃i + (1 − xij,a)
− 2 − m2

i

pipj

}
, (3.148)

for the definitions of the variables used see section 3.2.1.

Apart from the splitting kernels all the results derived in the corresponding sections

describing the branchings of massive final-state partons with spectators in the final- or

initial state can be taken over without any alteration. This includes the exact phase-space

factorisation as well as the parton kinematics defined there.

4. Comparing the hardest emission with matrix elements

In the following, the predictions for the hardest (first) emission of the parton shower al-

gorithm will be worked out for different processes and compared with corresponding exact

tree-level matrix element calculations. The set of processes to be considered covers three-

jet production in e+e− collisions, cf. section 4.1, the first order real correction process to

DIS, cf. section 4.2, and the production of a weak gauge boson accompanied by a light jet
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Figure 6: The two first order αs Feynman diagrams contributing to γ⋆ → qqg.

at hadron colliders, cf. section 4.3. These three examples constitute a full set of generic

processes to reliably test the first emission of the proposed parton shower approach.

4.1 Three-jet production at lepton-colliders

In this example the production of three jets at a lepton-collider is investigated. Jet pro-

duction proceeds via the s-channel exchange of a colour-singlet particle, namely a γ⋆ or

Z0-boson. The latter will be ignored in the discussion here. At first perturbative order in

αs, two Feynman diagrams contribute to the matrix element γ⋆ → qqg, corresponding to

the emission of a gluon from either the final-state quark or the anti-quark, cf. figure 6.

For convenience, the centre-of mass energy

Ec.m. ≡
√

Q2 , (4.1)

and the momentum fractions

xi ≡
2piQ

Q2
. (4.2)

are introduced. Neglecting the masses of the final-state particles the Lorentz-invariant

Mandelstam variables for the 1 → 3 process become

ŝ ≡ (p1 + p3)
2 = 2p1p3 = Q2(1 − x2) , (4.3)

t̂ ≡ (p2 + p3)
2 = 2p2p3 = Q2(1 − x1) , (4.4)

û ≡ (p1 + p2)
2 = 2p1p2 = Q2(1 − x3) . (4.5)

Energy-momentum conservation implies that

x1 + x2 + x3 = 2 and ŝ + t̂ + û = Q2 . (4.6)

The partonic differential decay rate with respect to the quark and anti-quark momentum

fractions x1,2 reads

dΓ̂

dx1dx2

∣∣∣∣∣
ME

= Γ̂0
αs

2π
CF

[
x2

1 + x2
2

(1 − x1)(1 − x2)

]
, (4.7)
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where Γ̂0 denotes the total decay rate for γ⋆ → qq,

Γ̂0 = 2αqede2
qEc.m. , (4.8)

see for instance [70].

In the parton shower approach, two contributions occur as well. They correspond to the

timelike splitting of either the quark or the anti-quark, and the total result is just the inco-

herent sum of the two pieces. To work this out, consider the case of the quark splitting with

the anti-quark being the spectator parton. Then, the shower variables are, cf. section 3.1.2,

y13,2 =
p1p3

p1p3 + p1p2 + p2p3
=

ŝ

ŝ + û + t̂
=

ŝ

Q2
, (4.9)

z̃1 =
p1p2

p1p2 + p3p2
=

û

û + t̂
, (4.10)

which, expressed in terms of the xi, translate into

y13,2 = 1 − x2 and z̃1 =
1 − x3

x2
= 1 − 1 − x1

x2
. (4.11)

Accordingly, the decay rate for the emission off the quark can be cast into the form

dΓ̂

dx1dx2

∣∣∣∣∣
PSq

= Γ̂0
αs

2π
CF

[
1

1 − x2

(
2

2 − x1 − x2
− (1 + x1)

)
+

1 − x1

x2

]
. (4.12)

The result for the emission of a gluon off the anti-quark can be obtained from eq. (4.12)

by 1 ↔ 2. Taken together, the parton shower decay rate yields

dΓ̂

dx1dx2

∣∣∣∣∣
PS

=
dΓ̂

dx1dx2

∣∣∣∣∣
PSq

+
dΓ̂

dx1dx2

∣∣∣∣∣
PSq

= Γ̂0
αs

2π
CF

[
x2

1 + x2
2

(1 − x1)(1 − x2)
+

1 − x1

x2
+

1 − x2

x1

]
. (4.13)

Obviously, the parton shower reproduces the matrix element calculation in both the soft

and the collinear limit. The only difference between the two results are two non-singular

terms in the parton shower result that vanish as x1,2 → 1.

4.2 Real corrections to leading order DIS

The simplest physical process involving initial-state hadrons is deep-inelastic lepton-nucleon

scattering (DIS), i.e. e±p → e± + X. At leading order, two partonic processes contribute,

namely e±q → e±q and e±q → e±q, both of which must be convoluted with the initial

hadron’s PDF to obtain the hadronic cross section. The interaction is mediated by virtual-

photon and Z0-boson exchange. In the following, however, only the γ⋆ channel is taken

into account, for which the two partonic cross sections are equal.

At next-to-leading order the quark can radiate a gluon before or after its interaction

with the virtual photon, cf. figure 7. Beyond this, at NLO the incoming quark may originate

from a gluon in the initial hadron that produces a quark-anti-quark pair which the γ⋆ then
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Figure 7: The two leading order Feynman diagrams contributing to γ⋆q → qg.

�
g(p)

γ⋆/Z0(q)

q(p2)

q(p1)

�
g(p)

γ⋆/Z0(q)

q(p1)

q(p2)

Figure 8: The two possible Feynman diagrams for γ⋆g → qq.

couples to, cf. figure 8. The real emission matrix elements can be expressed through the

kinematic variables

Q2 = −q2 , x =
Q2

2pq
, zi =

pip

pq
, (4.14)

where q denotes the four-momentum of the off-shell photon, p the incoming parton momen-

tum and the pi label the momenta of the final-state partons. The Mandelstam variables

for the 2 → 2 processes γ⋆(q)q(p) → q(p1)g(p2) and γ⋆(q)g(p) → q(p1)q(p2) are

ŝ ≡ (q + p)2 = 2pq − Q2 = Q2 1 − x

x
, (4.15)

t̂ ≡ (p1 − q)2 = −2p1q − Q2 = −Q2 1 − z1

x
, (4.16)

û ≡ (p2 − q)2 = −2p2q − Q2 = −Q2 1 − z2

x
. (4.17)

Momentum conservation implies that q + p = p1 + p2 and

ŝ + t̂ + û + Q2 = 0 . (4.18)

In the following, the two real emission processes will be discussed in detail.
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4.2.1 The gluon emission process

The matrix element of the gluon emission channel γ⋆(q)q(p) → q(p1)g(p2) reads [30, 70]

|M2,q(p1, p2; p)|2ME =
8παs

Q2
CF

[
x2 + z2

1

(1 − x)(1 − z1)
+ 2(1 − 3xz1)

]
· |M1,q(q + xp;xp)|2 ,

(4.19)

with M1,q(q + p; p) the matrix element of the lowest order process.

In the parton shower approach two contributions to this final state emerge. First, the

emission of the gluon from the initial-state quark with the final-state parton serving as

spectator (IF) has to be considered. Second, the initial-state parton acts as the spectator

of the final-state splitting q → qg (FI).

• IF.

The “parton shower”-matrix element of the initial-state splitting with final-state spec-

tator is obtained from eq. (3.101) and is given by

|M2,q(p1, p2; p)|2PSif (4.20)

=
1

2pp2

1

x21,p
8παs CF

[
2

1 − x21,p + u2
− (1 + x21,p)

]
· |M1,q(q + xp;xp)|2 ,

where the appropriate splitting function, eq. (3.93) with µ2
k = 0, has been inserted.

Employing the identities

x21,p =
p1p + p2p − p2p1

p1p + p2p
=

û + t̂ + ŝ

û + t̂
=

Q2

ŝ + Q2
= x , (4.21)

u2 =
p2p

p2p + p1p
=

t̂

û + t̂
= z2 = 1 − z1 , (4.22)

1

2pp2x
=

1

Q2pp2/pq
=

1

Q2(1 − z1)
, (4.23)

the expression above becomes

|M2,q(p1, p2; p)|2PSif =
8παs

Q2(1 − z1)
CF

[
2

2 − x − z1
− (1 + x)

]
· |M1,q(q + xp;xp)|2 .

(4.24)

• FI.

In full analogy the shower expression for the final-state emission process yields

|M2,q(p1, p2; p)|2PSfi

=
1

2p1p2

1

x12,p
8παs CF

[
2

1 − z̃1 + (1 − x12,p)
− (1 + z̃1)

]
· |M1,q(q + xp;xp)|2 .

With

x12,p =
p1p + p2p − p1p2

p1p + p2p
= x and z̃1 =

p1p

p1p + p2p
= z1 , (4.25)
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this can be cast into the form

|M2,q(p1, p2; p)|2PSfi =
8παs

Q2(1 − x)
CF

[
2

2 − x − z1
− (1 + z1)

]
· |M1,q(q + xp;xp)|2 ,

(4.26)

where in addition

2p1p2 = Q2 1 − x

x
(4.27)

has been employed.

Combining the two parton shower contributions yields the final result, namely

|M2,q(p1, p2; p)|2PS = |M2,q(p1, p2; p)|2PSif + |M2,q(p1, p2; p)|2PSfi

=
8παs

Q2
CF

[
x2 + z2

1

(1 − x)(1 − z1)

]
· |M1,q(q + xp;xp)|2 . (4.28)

When comparing this with the exact perturbative result of eq. (4.19), it can be inferred

that the parton shower exactly reproduces the soft and collinear singular structure of the

matrix element as z1 → 1 or x → 1. The only difference is an additional finite non-singular

term present in the exact result.

4.2.2 The initial-state gluon channel

Expressed in terms of the leading order matrix element the exact real emission next-to-

leading order result for the process γ⋆(q)g(p) → q(p1)q(p2) reads [30, 70]

|M2,g(p1, p2; p)|2ME (4.29)

=
8παs

Q2
TR

[
(z2

1 + (1 − z1)
2)(x2 + (1 − x)2)

z1(1 − z1)
+ 8x(1 − x)

]
· |M1,q(q + xp;xp)|2 .

Starting from the leading order matrix element γ⋆(q)q(p) → q(p1) there is only one pos-

sibility in the parton shower to reach the 2 → 2 process, the splitting of an initial-state

gluon into qq and the q interacting with the off-shell photon. The second matrix element

diagram, corresponding to the interaction of the anti-quark with the γ⋆, here has no par-

ton shower counterpart. However, when starting the shower from the charge conjugated

leading order process, namely γ⋆(q)q(p) → q(p1), this contribution will occur while the

γ⋆q interaction will be missing instead. The two terms are evaluated separately and then

added incoherently.

• Emission off the quark.

The case of an internal quark propagator is discussed first. According to eqs. (3.101)

and (3.96) the parton shower approximation to the matrix element reads

|M2,g(p1, p2; p)|2PSq

=
1

2pp2

1

x21,p
8παs TR [1 − 2x21,p(1 − x21,p)] · |M1,q(q + xp;xp)|2

=
8παs

Q2(1 − z1)
TR [1 − 2x(1 − x)] · |M1,q(q + xp;xp)|2 . (4.30)
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• Emission off the anti-quark.

Starting instead the shower from the q initiated process, and emitting the quark into

the final state yields, correspondingly,

|M2,g(p1, p2; p)|2PSq

=
1

2pp1

1

x12,p
8παs TR [1 − 2x12,p(1 − x12,p)] · |M1,q(q + xp;xp)|2

=
8παs

Q2z1
TR [1 − 2x(1 − x)] · |M1,q(q + xp;xp)|2 . (4.31)

Due to the charge conjugation invariance of the leading order matrix element,

|M1,q(q + xp;xp)|2 = |M1,q(q + xp;xp)|2 , (4.32)

the two parton shower contributions can directly be combined and yield

|M2,g(p1, p2; p)|2PS = |M2,g(p1, p2; p)|2PSq + |M2,g(p1, p2; p)|2PSq

=
8παs

Q2
TR

[
x2 + (1 − x)2

z1(1 − z1)

]
· |M1,q(q + xp;xp)|2 . (4.33)

Again the parton shower matches the soft and collinear behaviour of the matrix element

given in eq. (4.29) and reproduces the exact result up to non-singular terms.

4.3 Associated production of a weak gauge boson and a light parton

The lowest order production process of weak gauge bosons (W±, Z0, γ⋆) at a hadron collider

proceeds via the s-channel fusion of two initial-state quarks. Without losing generality

W± boson production will be investigated in the following. The leading order process then

simply reads qq′ → W±. At order αs there are three processes emerging: qq′ → W±g,

gq′ → W±q and qg → W±q′. Considering on-shell W± bosons for simplicity,7 only 2 → 2

processes have to be discussed, which can be described using the Mandelstam variables

ŝ ≡ (p1 + p2)
2 = 2p1p2 , (4.34)

t̂ ≡ (p1 − p3)
2 = −2p1p3 , (4.35)

û ≡ (p2 − p3)
2 = −2p2p3 . (4.36)

Momentum conservation then implies that

ŝ + t̂ + û = m2
W , (4.37)

where mW denotes the W±-boson mass.

4.3.1 The gluon emission channel

The first channel to be discussed is the gluon emission process qq′ → W±g. At tree-level,

there are two Feynman diagrams contributing to the matrix element, cf. figure 9. The

7This corresponds to neglecting the off-shell gauge boson decays which, however, do not affect the QCD

dynamics of the processes under consideration. The decay products of the gauge boson can be introduced

into the process using the narrow-width-approximation, or by incorporating the full off-shell W± propagator.
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g(p3)

W±(p4)

Figure 9: The leading order Feynman diagrams contributing to the process qq′ → W±g.

partonic differential cross section can be written as [70]

dσ̂

dt̂

∣∣∣∣
ME

=
σ̂0

ŝ

αs

2π
CF

[
t̂2 + û2 + 2m2

Wŝ

t̂û

]
, (4.38)

with σ̂0 the cross section of the leading order process qq′ → W±

σ̂0 =
π

3ŝ

g2
W

4
, (4.39)

where CKM-effects have been ignored. In the parton shower approach there are two ways

to produce the final-state gluon, which have to be added incoherently: either the gluon can

be emitted from the initial-state quark or from the anti-quark.

• Emission off the quark.

As a first step, the kinematical variables used in the parton shower approximation

should be related to the Mandelstam variables. In the first case, the initial quark as

emitter and the initial anti-quark as spectator, the parton shower variables become,

cf. section 3.4,

ṽ3 =
p3p1

p1p2
= − t̂

ŝ
and x3,12 =

p1p2 − p3p1 − p3p2

p1p2
=

ŝ + t̂ + û

ŝ
=

m2
W

ŝ
. (4.40)

Using the appropriate splitting function of eq. (3.128), the parton shower differential

cross section

dσ̂

dṽ3

∣∣∣∣
PSq

= σ̂0
αs

2π

1

ṽ3
CF

[
2

1 − x3,12
− (1 − x3,12)

]
(4.41)

can be cast into

dσ̂

dt̂

∣∣∣∣
PSq

= σ̂0
αs

2π
CF

1

−t̂

[
2

1 − x3,12
− (1 − x3,12)

]
. (4.42)

Using the relation

(1 − x3,12) = − t̂ + û

ŝ
(4.43)
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Figure 10: The leading order Feynman diagrams contributing to the process gq′ → W±q.

and multiplying with ŝ/ŝ yields

dσ̂

dt̂

∣∣∣∣
PSq

=
σ̂0

ŝ

αs

2π
CF

[
ŝ2 + m4

W

t̂(t̂ + û)

]
. (4.44)

• Emission off the anti-quark.

Swapping the rôle of the emitter and the spectator parton amounts to only inter-

changing t̂ and û in the results above. Accordingly, the differential cross section in

this case is given by

dσ̂

dt̂

∣∣∣∣
PSq

=
σ̂0

ŝ

αs

2π
CF

[
ŝ2 + m4

W

û(t̂ + û)

]
. (4.45)

The full parton shower result is the sum of the two contributions and reads

dσ̂

dt̂

∣∣∣∣
PS

=
dσ̂

dt̂

∣∣∣∣
PSq

+
dσ̂

dt̂

∣∣∣∣
PSq

=
σ̂0

ŝ

αs

2π
CF

[
ŝ2 + m4

W

t̂û

]
. (4.46)

Again, the parton shower approach provides the correct description for soft and collinear

phase-space configurations but misses non-singular terms. The difference of the parton

shower and the exact result can be quantified by the ratio

dσ̂/dt̂
∣∣
ME

dσ̂/dt̂
∣∣
PS

=
t̂2 + û2 + 2m2

Wŝ

ŝ2 + m4
W

= 1 − 2t̂û

ŝ2 + m4
W

, (4.47)

which can take values between 0.5 and 1 in full agreement with the result of the parton

shower algorithm implemented in Pythia [71]. This indicates that the parton shower

approximation tends to overestimate the matrix element - a feature also present in e+e− →
qq̄g, but not in the deep inelastic scattering processes.

4.3.2 The initial-state gluon case

There are two Feynman diagrams, cf. figure 10, contributing to the channel with an initial-

state gluon, i.e. to the process gq′ → W±q. The result of the full matrix element calculation

reads [70]

dσ̂

dt̂

∣∣∣∣
ME

=
σ̂0

ŝ

αs

2π
TR

[
ŝ2 + û2 + 2m2

W t̂

−ŝt̂

]
. (4.48)
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In the parton shower approach only one emission process contributes to this channel, corre-

sponding to the t-channel diagram. The s-channel contribution is not realised in the shower

ansatz. Using the definitions of the shower variables as given above and the corresponding

splitting function, cf. eq. (3.131), the parton shower cross section reads

dσ̂

dt̂

∣∣∣∣
PS

=
σ̂0

ŝ

αs

2π
TR

ŝ

−t̂
[1 − 2x3,12(1 − x3,12)]

=
σ̂0

ŝ

αs

2π
TR

[
ŝ2 + 2m2

W(t̂ + û)

−ŝt̂

]
, (4.49)

where

(1 − x3,12) = − t̂ + û

ŝ
and x3,12 = m2

W/ŝ (4.50)

has been used. The ratio of the parton shower and the matrix element result is

dσ̂/dt̂
∣∣
ME

dσ̂/dt̂
∣∣
PS

=
ŝ2 + û2 + 2m2

Wt̂

ŝ2 + m4
W(t̂ + û)

= 1 +
û(û − 2m2

W)

(ŝ − m2
W)2 + m4

W

, (4.51)

varying between 1 and 3 [71]. Accordingly, the parton shower ansatz tends to undershoot

the exact matrix element. However, the shower is constructed to give the correct an-

swer in the logarithmically enhanced phase-space regions and thus has the correct limiting

behaviour in the soft and collinear limits. The differences identified here are a result of

differences in the non-singular terms, contributing only in hard regions of phase space. The

process qg → W±q′ closely follows the above example solely t̂ and û have to be exchanged.

This leads to the same qualitative results and the same conclusions.

5. Applications

In this section, the abilities of the newly developed parton shower formulation in describing

QCD dynamics will be highlighted by comparing its results for various physics processes

with experimental data and other calculations: In section 5.1, the predictions for hadron

production in e+e− collisions as measured at LEP will be studied and some results related

to a future machine operated at
√

s = 500 GeV will be discussed. In section 5.2, emphasis

is put on the capabilities of the shower to describe particle production at hadron colliders

such as the Tevatron or the upcoming LHC.

5.1 Jet production at e
+

e
− colliders

Measurements of hadronic final states produced in e+e− collisions provide a very precise

probe of QCD dynamics in the final state and an excellent means to deduce its fundamental

parameters such as the value of αS(mZ), see for instance [72], and the colour charges

CF and CA in three- and four-jet events as discussed e.g. in [72]–[75]. Therefore it is

not surprising that in the past years calculations for relevant three-jet observables, such

as thrust, have become available at NNLO [76] and that full parton-level Monte Carlo

codes for four-jet final states at NLO have been constructed [77, 78]. Obviously such
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observables also provide a critical test of the corresponding final-state radiation piece of a

parton shower model. However, due to the fragmentation of partons into hadrons, which

at the moment can be simulated with phenomenological models only, the parton shower

predictions can not directly be compared with experimental data but rather have to be

supplemented with a hadronisation model. The new parton shower presented here therefore

has been interfaced to the Lund string fragmentation routines of Pythia version 6.2 [79]

in the framework of the Sherpa event generator. The large number of very precisely

measured observables at various energies allows tuning the intrinsic parameters of the

parton shower in conjunction with the phenomenological parameters of the fragmentation

model. Such a procedure has been performed, for instance, for the new parton shower

and fragmentation code in Herwig++ [80]. In principle, such a tuning is a very time-

consuming and delicate procedure, see for instance [81], deserving a publication in its own

right. Recent developments to automatise the task of generator tuning and validation to a

large extend are reported in [82]. Here, only a very limited tuning based on few parameters

and observables only has been performed. The results of this tuning are presented in

section 5.1.1. In section 5.1.2 the focus is on heavy-quark production at LEP1 and ILC

energies to validate the treatment of finite parton masses in the shower model.

5.1.1 Comparison with LEP1 data

The most extensive data set available to validate QCD Monte Carlo predictions are LEP

measurements at the Z0 pole. A selection of event shape variables, multiplicity distri-

butions, differential jet rates, four-jet angle measurements and various particle momen-

tum distributions have been used to select values for the unconstrained, phenomenological

parameters of the simulation, namely the value of the strong coupling constant at mZ ,

the infrared shower cut-off k⊥,0 and the three Lund string hadronisation parameters a

(PARP(41)), b (PARP(42)) and σq (PARP(21)). For the results presented in the following,

they have been fixed to αs(mZ) = 0.125, k⊥,0 = 0.63 GeV, a = 0.33, b = 0.75 GeV−2,

and σq = 0.358 GeV, respectively. This yields a mean charged multiplicity per event of

〈Nch〉 = 20.87 at
√

s = mZ , in good agreement with the experimentally found value of

〈Nch〉 = 20.92 ± 0.24 [83].

Figures 11 to 14 show some exemplary results obtained with the new shower imple-

mentation compared to Delphi LEP1 data at
√

s = 91.2 GeV [83].

In figure 11 the new algorithm, denoted as “CS shower” in the following, is compared

with some event-shape measurements by Delphi [83]. The distributions of thrust, thrust-

major, thrust-minor and aplanarity are displayed. The lower panel of each plot contains

the bin-wise ratio (MC-data)/data, and the yellow bands show the statistical plus system-

atic error of the respective measurements. All the observables are sensitive to the pattern

of QCD radiation probing both soft and hard emissions off the shower initiating qq̄ pair.

The Monte Carlo predictions agree very well with the event-shape data. There is some

slight excess at very low 1 − T corresponding to two-jet like events. This region of phase

space however is very sensitive to hadronisation corrections and therefore dominated by

non-perturbative physics. The same reasoning holds for the major and minor distributions

at low M or m.
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Figure 11: The event-shape variables 1−Thrust (1 − T ), Aplanarity (A), Major (M) and Minor

(m) in comparison with Delphi data [83].

The transverse-momentum distribution within and out of the event plane defined by

the thrust and thrust-major axes, (pin
T ) and (pout

T ), respectively, are presented in figure 12.

While pin
T is quite well modeled by the Catani-Seymour shower, pout

T is significantly un-

derestimated for values above 1 GeV. This tendency, however, is observed in other QCD

Monte Carlo simulations as well [83].

In figure 13 the predictions for the exclusive two-, three-, four- and five-jet rates in the

Durham algorithm [84] as a function of the jet resolution yDurham
cut are compared with data

taken by the Delphi experiment [85]. They all exhibit a sufficient agreement with data

within the experimental uncertainty bands. For the four- and five-jet rate the shower seems

to underestimate the region of yDurham
cut ≈ 0.001, however, this region is also affected by
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Figure 12: The pin
T

and pout
T

observables measured with respect to the thrust axis compared to a

Delphi measurement [83].

hadronisation effects and a more sophisticated tuning may provide an even better agreement

with data here. The dependence on the choice of hadronisation parameters is even more

pronounced for jet resolutions smaller than 0.001 where the results for the new shower

preferably lie on the upper side of the experimental uncertainty band.

The last observables to be considered are jet angular distributions in events with four

jets. These observables can not be expected to be too well described by this parton shower

model as they should probe spin correlations of the produced partons. Such correlations,

however, are not taken into account here. Anyway, a complete description of these effects re-

quires full matrix element calculations (eventually combined with a parton shower) [11, 86].

In figure 14, the predictions for the Bengtsson-Zerwas [87] and the Nachtmann-Reiter [88]

angle are compared with Delphi data [85] for events with four jets, defined in the Durham

algorithm with at a jet resolution yDurham
cut = 0.008. Both results agree surprisingly well

with data. A similar level of agreement is observed for the other two prominent four-jet

angles, α34 and the Körner-Schierholz-Willrodt angle, that are not shown here.

5.1.2 Jet rates in heavy-quark production

The leading order of heavy-quark production at lepton colliders also proceeds through an

intermediate γ∗ or Z0 in the s-channel. Since pair production of top-quarks was outside

the kinematical reach of LEP, only the production of bottom-quarks is available at these

energies to discuss the treatment of heavy quarks in the new parton shower algorithm.

At a future international linear collider (ILC), operating at or around
√

s = 500 GeV,

pair production of top-quarks will play a key rôle in the physics programme. This is also

true for the LHC where top-quarks will copiously be produced and constitute a major

background in nearly all searches for new physics. Therefore, a correct description of the

radiation pattern of heavy quarks will be of enormous importance. As already hinted at in
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Figure 13: The n-jet rates Rn for the Durham jet algorithm as a function of the jet-resolution

parameter yDurham
cut . Data taken from [85].

section 3.1.1, radiation off massive quarks is suppressed with respect to the case mQ = 0,

also known as “dead-cone”-effect [46]. The impact is however rather small when considering

b-quark masses of 4.8 GeV at collider energies that are much larger. To illustrate the impact

of the finite b-quark mass in the shower approach the Durham two- and three-jet rates for

bb̄-production at LEP1 are presented in the left panel of figure 15. There, results are shown

for the fully massive case (i.e. the mass has fully been taken into account in the splitting

kernels, the phase-space boundaries and the splitting kinematics) and for the massless case

are depicted. As expected, in the massive case both R2 and R3 are slightly enhanced at low

values of yDurham
cut , corresponding to the suppressions of additional radiation that turns a

two-jet event into three-jet and a three-jet into a four-jet event at the scale of the emission.
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Figure 14: The Bengtsson-Zerwas and Nachtmann-Reiter four-jet angles compared with Delphi

data [85].
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Figure 15: The exclusive Durham two- and three-jet rates in inclusive bb̄ production at LEP1

(left panel) and tt̄ production at a 500GeV linear collider (right panel). The solid curves correspond

to fully taking into account the quark masses in the parton shower simulation while for the dashed

predictions the finite masses have been neglected.

In the right panel of figure 15 the same observables are presented, but this time for

the pair-production of 175 GeV top-quarks at a 500 GeV ILC. Obviously, the finite mass

has to be taken into account in the description of QCD radiation off top-quarks, since

the differences with respect to the massless case can exceed an order of magnitude for the

two-jet rate.
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5.2 Particle production in hadron collisions

With the advent of the LHC era, the description and simulation of particle production

processes at hadron colliders gained even more relevance. Due to the colour-charged par-

tonic initial states, every hard process at hadron colliders is accompanied by initial- and

subsequent final-state radiation. In the following, only two examples shall be considered to

highlight the performance of the new parton shower model in such situations. First, the in-

clusive production of Drell-Yan lepton pairs, the simplest process that features initial-state

emitter — initial-state spectator dipoles, and, second, QCD jet production are discussed.

For the latter, besides looking at some inclusive two-jet distributions, three-jet observ-

ables sensitive to the inclusion of QCD colour coherence are considered and qualitatively

compared with data.

For all the predictions presented below, the CTEQ6L set of PDFs [89] has been used,

the strong coupling constant has been fixed to αs(mZ) = 0.118 with its running taken at

two-loop level, in accordance with the choice in the PDF, and the infrared cut-off of the

shower is chosen to be k⊥,0 = 2GeV. Hadronisation of the partonic shower final states is

again accomplished by an interface to the Lund string routines of Pythia 6.2 [79].

5.2.1 Inclusive gauge boson production

The production of electroweak gauge bosons, e.g. W± and Z0 bosons, and their subsequent

decay into leptonic final states, is one of the most prominent processes at hadron colliders

due to their clean signature. Although very interesting in their own right, their inclusive

production, i.e. their production together with additional QCD jets, represents a serious

background to many other interesting processes, like, e.g. the production and decay of top-

quarks or SUSY particles. Therefore, many theoretical efforts have been undertaken to

predict gauge boson production as precisely as possible, both at fixed order in the strong

coupling, see for instance [90]–[94], or focusing on the analytical resummation of large

logarithms from soft gluon emissions, see for example [95]–[99]. An important ingredient

in all cases have been parametrisations of the PDFs and a good perturbative control over

their scaling behaviour, which by now is known at the three-loop level [100]. In addition,

in the past few years, Drell-Yan production formed the testbed for approaches aiming at

the combination of tree-level matrix elements with parton shower Monte Carlos [17, 20,

27, 101, 102]. Parton shower Monte Carlos thereby have to deliver the correct description

for the bulk of the events where the bosons are accompanied by rather soft emissions only.

In the following, Drell-Yan production of γ∗/Z0 at Tevatron Run I energies is con-

sidered with the bosons decaying into e+e−-pairs. They are constrained to fall into a

mass-window of 66 GeV < Me+e− < 116 GeV. The predictions of the new shower algo-

rithm will directly be compared to results obtained with the matrix element-parton shower

merging approach as implemented in Sherpa. To this end, an inclusive sample combining

matrix elements for no extra emission and one extra final-state QCD parton has been gen-

erated with Sherpa version 1.0.10. In the figures this sample will be denoted by “Sherpa

1.0.10 CKKW (0+1 jet ME)”.
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Figure 16: The rapidity- (left panel) and pseudo-rapidity (right panel) distribution of e+e−

Drell-Yan pairs produced in pp̄ collisions at
√

s = 1800GeV.

The discussion of the results starts with the rapidity- and pseudo-rapidity distributions

of the produced lepton-pair, see figure 16. As the shape of the former is already described

well at the leading order, i.e. without any radiation, there is hardly any difference visible

for the two results. The gauge boson pseudo-rapidity distribution however, only emerges

when there is some additional QCD radiation. The radiation pattern, and especially the

hardest emission, determines this leptonic observable. The pure shower result is in excellent

agreement with the merged result, which contains the exact tree-level matrix element for

the first hard emission. However, the shower distribution is somewhat lower at central

pseudo-rapidity and slightly exceeds the merged Sherpa result for the two maxima around

ηe+e− ≈ ±4. These differences can be traced back to the lack of sufficiently hard radiation

in the shower, which is constrained from above through the default shower start scale for

this process, namely the invariant mass squared of the initial dipoles, M2
e+e−

. Below that

scale, however, the parton shower can be expected to deliver reliable results, and in order

to fill the phase space above that scale, matrix element-parton shower merging techniques

should be added.

The smaller amount of hard radiation can be further quantified by looking at the

differential jet rates d1 and d2 for the k⊥-jet algorithm [103], displayed in figure 17. These

observables determine the scales where the first (d1) and second (d2) additional parton gets

resolved as a jet from the core process. The results for the Catani-Seymour based shower

and the merged Sherpa sample agree well for small cluster scales but, as can be expected,

the shower is significantly lower for values of di > mZ .

The last observable to be considered is the transverse momentum distribution of the

lepton-pair. This distribution has been measured with high precision by the Tevatron

experiments. Like the Drell-Yan pseudo-rapidity it is very sensitive to both soft and hard

radiation accompanying the produced boson. Figure 18 contains a comparison of the
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Figure 17: The k⊥ differential jet rates d1 and d2 in e+e− + X production at Tevatron Run I.
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Figure 18: The p⊥ distribution of e+e− Drell-Yan pairs in comparison with data from CDF at

the Tevatron, Run I [104].

prediction from the new shower model with a CDF measurement [104].8 The agreement

between data and simulation is quite good up to pT ’s of approximately 80 GeV. The upper-

right part of figure 18 contains a blow-up of the low transverse-momentum region of pT <

20 GeV, this time, however, on a linear scale. There, the parton shower describes the

turn-on of the distribution quite nicely, the actual peak, however, is slightly higher and a

bit broader than seen in data. To describe the very low transverse-momentum region a

8A comparison of the merged Sherpa prediction with this data has already been presented in [17].
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Gaussian-smeared intrinsic k⊥ was introduced, with a mean of 0.52 GeV and a width of

0.8 GeV. This smearing is applied, after the shower terminated, to the primary, low-scale

“initiator” partons, and it can be thought of as a residual effect due to their binding in

the proton. In this model, similar to the one in Pythia, the intrinsic primoridal transverse

momentum is spread over all final state particles in due proportion, since the k⊥-kick

rotates the full shower. A more detailed tuning of these values combined with the shower

cut-off k⊥,0 may yield an even better description of the distribution’s peak.9 Above 80 GeV

the parton shower dies off very rapidly due to its phase space being constrained by the

choice of the starting scale, k2
⊥,max = M2

e+e−
. For illustrative purposes a prediction has

been added where the start scale has been enhanced to 4M2
e+e−

. While the results at low

pT do not change significantly, the distribution continues in the tail, thereby following the

experimental data. But, of course, with this choice of parton shower starting scale, there is

a similar drop-off of the distribution at scales of around 4M2
e+e−

. However, since there is no

guarantee that the parton shower kernels perform well enough at large scales, i.e. outside

the soft- and collinear phase-space regions, it seems to be overly optimistic to stretch its

predictions to such high scales. Instead, the parton shower description should consistently

be improved by incorporating exact higher-order corrections.

5.2.2 Inclusive jet production

The most obvious QCD production process to look for at hadron colliders is inclusive jet

production. However, from a theoretical point of view this is quite a complicated process.

Besides tree-level calculations for up-to six final-state jets, so far, there merely exist full

next-to-leading order results up-to three-jet production [38, 106]–[109]. Despite of strong

efforts, culminating in evaluating the complete set of necessary matrix elements [110]–

[114] and in developing methods to isolate the infrared divergences in the real correction

part [115] a full NNLO calculation for inclusive jet production has not been finished yet.

Also, from the point of view of the parton shower presented here, jet production at hadron

colliders is rather involved. This is because the 2 → 2 hard process will contain all possible

colour connections between initial-state and final-state partons. Hence, QCD jet produc-

tion constitutes a severe test of the entire shower algorithm. The input parameters for the

simulations have been chosen as specified above. The starting scale of the shower, however,

is related to the transverse momentum of the 2 → 2 core process’ outgoing partons, namely

k2
⊥,max = p2

⊥,j.

The first thing to be looked at is a very inclusive quantity, the dijet invariant mass. This

has been measured by DØ during Run I [116]. The jets considered there have been recon-

structed using a jet-cone algorithm with a cone opening angle of R = 0.7 in the η−φ space

9It should be noted here that in this parton shower model, apart from some intrinsic k⊥, the lepton

pair receives transverse momentum from splitting initial-initial dipoles only. Therefore, the first gluon

emission into the final-state dominates the boson’s pT distribution. However, from [105] it is known that at

sufficiently high energies the low-pT region is also populated by events where two or more relatively high-pT

partons compensate each other. In this approach, such effects are mostly absent apart from configurations

where an initial gluon splits into an initial and a final-state quark. The impact of those compensating

configurations still remains to be studied.
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Figure 19: Dijet mass Mdijet measured by DØ at Tevatron Run I [116].

and with jet transverse energies above 30 GeV. Dijet candidates have then been subjected to

the requirement that both jets satisfy |ηj | < 1.0. Figure 19 exhibits the resulting dijet-mass

distribution starting at Mdijet > 200 GeV. It is a very steeply falling spectrum spanning

six orders of magnitude in the mass range under consideration. To compare with data the

result of the (leading order) simulation has been normalised to the cross section observed in

experiment. In fact, the prediction of the proposed shower algorithm then is in very good

agreement with the data and almost everywhere exactly hits the weighted bin centers.

Another interesting observable when studying dijet events is the azimuthal angle be-

tween the two highest-pT jets. If there is no additional QCD radiation the two jets have

equal transverse momenta and they are oriented back-to-back. Thus, in this case, their

azimuthal separation ∆φdijet = |φ1 − φ2| equals π. In the presence of merely soft radiation

the azimuthal angles remain strongly correlated, the strength of the decorrelation rises

with the presence of additional hard radiation. Therefore, the dijet decorrelation provides

a testbed for soft- and hard QCD emissions without the necessity to reconstruct further

jets. Figure 20 contains the results of a recent DØ measurement for cone jets found for

R = 0.7 [117]. The data fall into different ranges of the leading-jet transverse momentum

and are then multiplied with different constant prefactors in order to display them in one

plot. In all cases, the second-leading jet was required to have a transverse momentum

pT > 40 GeV and both jets are constrained to the central-rapidity region, |yj | < 0.5. The

data are overlayed with the respective predictions of the Catani-Seymour dipole shower

approach. The simulation agrees very well with the data over the whole interval of ∆φdijet

spanned by the experimental measurements. This is a very satisfying result as it proves

that the proposed shower formulation not only correctly accounts for phase space regions

related to soft and collinear radiation but also yields qualitatively and quantitatively cor-

rect estimates for rather hard emissions as well. Furthermore, since this observable is quite

sensitive to model-intrinsic scale choices such as the shower start scale and scales entering

the running coupling constant and parton density functions, this agreement proves that

the defaults have been chosen correctly.
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Figure 20: Azimuthal decorrelation in dijet events measured by DØ at Tevatron Run II [117].

The last item to be discussed are observables in QCD jet production at hadron colliders

that are known to be sensitive to the correct treatment of QCD soft colour coherence in

the parton shower simulation. Colour-coherence effects have been widely studied for e+e−

collisions, for an early review see e.g. [118]. They manifest themselves in the fact that

soft emissions are forbidden outside a certain angular cone around the emitting particle’s

direction, known as angular ordering [46, 50]. To account for this in shower Monte Carlos

the phase space for allowed emissions has to be properly constrained. Within the Herwig

Monte Carlo for instance this is realised by evolving the shower in terms of cone-opening

angles. While the situation for pure final-state showers is quite clear, in hadronic collisions

the situation is slightly more complicated due to the presence of more colour flows, among

them those that connect initial- and final-state partons. As colour-coherence here already

influences the first emission from the initial- and final-state partons QCD three-jet events

are the best place to look for the pattern of these phenomena at hadron colliders.

In one of the pioneering studies [119] three-jet events that feature a hard leading

jet and a rather soft third jet have been considered. Observables potentially sensitive

to colour coherence are spatial correlations between the third jet and the leading ones.

In [119] such discriminating variables have been found and by comparison with Monte

Carlo simulations evidence for the observation of colour coherence in hadron collisions has

been provided. This ultimately has led to a refinement of the Pythia shower algorithm in

order to appropriately model colour coherence in the spirit of [120]. In the CDF study [119]

jets have been defined through a cone algorithm with a cone radius of R = 0.7 and the

following event selection criteria have been applied:

• For the two leading jets the pseudo-rapidity is constrained to |η1| < 0.7 and |η2| < 0.7;
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CDF data taking during Tevatron Run I. Experimental errors are statistical only. Histograms are

normalised to one.

• they have to be back-to-back within 20 degrees in the transverse plane, corresponding

to |φ1 − φ2| > 2.79 radian;

• and the transverse energy of the leading jet, ET1, has to exceed 110 GeV, the third

jet is required to have ET3 > 10 GeV.

• Only for the study of the α variable defined below the additional cut 1.1 < ∆R23 < π,

where ∆R23 =
√

(η2 − η3)2 + (φ2 − φ3)2, is imposed.

A number of observables has been considered, the two most convenient and discriminat-

ing ones have been the pseudo-rapidity distribution of the third jet, η3, and the polar

angle in the space parametrised by ∆φ = φ3 − φ2 and ∆H = sign(η2)(η3 − η2), namely

α = arctan(∆H/|∆φ|) .10 It should be stressed that the published results, used for the com-

parison, are not corrected for detector effects, such as finite resolution and uninstrumented

regions, and therefore can only qualitatively be compared with theoretical calculations.

The results of the Monte Carlo simulations exhibited in [119] have passed the full chain of

the CDF detector simulation. In figure 21 the measurements are compared with simulated

events at the hadron level.11 In the left panel the η3 distribution is shown and the right

10A further observable considered in the CDF study is the spatial separation of the second- and third jet in

the η−φ space, ∆R23. This observable, however, seems to be less discriminatory between theoretical models.

In addition, and more importantly, detector effects seem to have a larger impact on its discriminating power.

Therefore it is not taken into account here.
11In [119] it is found that detector corrections are rather small for the η3 distribution but somewhat larger

for α. The basic shape of the distributions, however, is not altered by these effects.
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panel contains the comparison of the α distribution. Both predictions agree well with the

data. The η3 distribution tends to be broader in models that take into account colour-

coherence effects and only then theoretical calculations show the significant dip around

η3 ≈ 0 seen in data.12 The α variable is also very sensitive to the inclusion of colour

coherence. It decreases from α = −π/2 to α = 0 but then the slope changes and the distri-

bution rises as α → π/2. This trend is clearly seen for the simulation with the new shower

algorithm. Models not taking into account coherence fail to describe the distribution’s rise

towards α → π/2 and have a clear excess of events at small |α|. Concerning the interpre-

tation of these results the missing detector smearing for the shower simulation has to be

kept in mind. However, in ref. [119] estimates for the size of the detector effects are given,

showing that the impact of the finite detector resolution is much smaller than the size of

the physical effects. The generic features of the two observables presented here are not

dependent on detector effects, and they are well described by the new shower formulation.

The conclusion of this is that the proposed parton shower algorithm with its notion of

emitter-spectator dipoles associated with the color flow of the event and using transverse

momenta as evolution variable accounts for soft colour coherence and yields a very satis-

fying description, both on the qualitative and the quantitative level. It can be anticipated

that such non-trivial quantum phenomena are of large importance at the LHC, since the

phase space for jet production is much larger and hard jets are produced copiously. For a

solid description of QCD therefore the systematic and correct inclusion of these effects is

paramount.

6. Conclusions and outlook

In this publication a parton shower model based on Catani-Seymour dipole subtraction

kernels has been presented, which was proposed for the first time in [1, 2]. In the present

implementation, the original proposal is extended to cover also initial-state splittings, finite

parton masses, and QCD radiation off SUSY particles.

Choices concerning the evolution parameter of the parton shower and the various scales

entering running coupling constants, PDFs, etc. have been detailed, fixing the full algo-

rithm. The kinematics of massive splittings has been presented in some detail, and the

corresponding massless limits have been discussed. By direct comparison with some bench-

mark processes, at first order in αs, the differences of the parton shower approximation

with respect to exact results have been worked out. It has been shown that indeed the

parton shower algorithm presented here reproduces the soft and collinear limits of the ex-

act matrix elements and that differences between both results are non-singular terms only.

Some first results with this new parton shower formulation have been presented and show

very encouraging agreement with other models and with experimental data.

In the near future, this new algorithm will be fully incorporated into the Sherpa

framework and it will be made publicly available in the next releases of the code. This

12The Herwig Monte Carlo, incorporating colour coherence through explicit angular ordering, describes

the data very well. Switching on the approximate version of angular ordering in Pythia, realised by a veto

on rising opening angles during shower evolution, significantly improves Pythia’s agreement with data.
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will also involve a more careful tuning of the shower parameters and the inputs of the

hadronisation models provided by or linked to Sherpa, which surely will further improve

the agreement with data. Planned is a detailed comparison against another new shower

ansatz that is based on splitting colour dipoles [121], and that is also being developed in the

Sherpa framework at present. In addition, a full merging with multi-leg matrix elements

in the spirit of [11] will be implemented. It can furthermore be anticipated that this new

shower implementation will lend itself to incorporation of MC@NLO-techniques [7, 9].
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[3] T. Sjöstrand, High-energy physics event generation with Pythia 5.7 and JETSET 7.4,

Comput. Phys. Commun. 82 (1994) 74.
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[29] T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved

multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302].

[30] S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO

QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323].

– 57 –

http://jhep.sissa.it/stdsearch?paper=08%282002%29015
http://jhep.sissa.it/stdsearch?paper=08%282002%29015
http://arxiv.org/abs/hep-ph/0205283
http://jhep.sissa.it/stdsearch?paper=05%282002%29046
http://arxiv.org/abs/hep-ph/0112284
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB632%2C343
http://arxiv.org/abs/hep-ph/0108069
http://jhep.sissa.it/stdsearch?paper=01%282007%29013
http://arxiv.org/abs/hep-ph/0611129
http://jhep.sissa.it/stdsearch?paper=02%282004%29056
http://arxiv.org/abs/hep-ph/0311263
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C114009
http://arxiv.org/abs/hep-ph/0409106
http://jhep.sissa.it/stdsearch?paper=07%282005%29018
http://jhep.sissa.it/stdsearch?paper=07%282005%29018
http://arxiv.org/abs/hep-ph/0503281
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C71%2C15
http://jhep.sissa.it/stdsearch?paper=07%282005%29054
http://jhep.sissa.it/stdsearch?paper=07%282005%29054
http://arxiv.org/abs/hep-ph/0503293
http://jhep.sissa.it/stdsearch?paper=07%282003%29001
http://arxiv.org/abs/hep-ph/0206293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C81%2C357
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C81%2C357
http://arxiv.org/abs/hep-ph/9401258
http://jhep.sissa.it/stdsearch?paper=02%282003%29027
http://jhep.sissa.it/stdsearch?paper=02%282003%29027
http://arxiv.org/abs/hep-ph/0208156
http://arxiv.org/abs/0706.2334
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C132%2C306
http://arxiv.org/abs/hep-ph/0002082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC50%2C843
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC50%2C843
http://arxiv.org/abs/hep-ph/0512150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC53%2C473
http://arxiv.org/abs/0706.2569
http://jhep.sissa.it/stdsearch?paper=12%282003%29045
http://jhep.sissa.it/stdsearch?paper=12%282003%29045
http://arxiv.org/abs/hep-ph/0310083
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC39%2C129
http://arxiv.org/abs/hep-ph/0408302
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB485%2C291
http://arxiv.org/abs/hep-ph/9605323


J
H
E
P
0
3
(
2
0
0
8
)
0
3
8

[31] S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for
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[109] Z. Trócsányi, Three-jet cross section in hadron collisions at next-to-leading order: pure

gluon processes, Phys. Rev. Lett. 77 (1996) 2182 [hep-ph/9610499].

[110] Z. Bern, L.J. Dixon and D.A. Kosower, A two-loop four-gluon helicity amplitude in QCD,

JHEP 01 (2000) 027 [hep-ph/0001001].

– 61 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB359%2C343
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C201801
http://arxiv.org/abs/hep-ph/0201206
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C094008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C094008
http://arxiv.org/abs/hep-ph/0312266
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD40%2C2245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB511%2C649
http://arxiv.org/abs/hep-ph/9706526
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C5558
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C5558
http://arxiv.org/abs/hep-ph/9704258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C014011
http://arxiv.org/abs/hep-ph/0202251
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C222001
http://arxiv.org/abs/hep-ph/0507317
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB691%2C129
http://arxiv.org/abs/hep-ph/0404111
http://jhep.sissa.it/stdsearch?paper=05%282004%29040
http://arxiv.org/abs/hep-ph/0312274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C054017
http://arxiv.org/abs/hep-ph/0503280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C845
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C845
http://arxiv.org/abs/hep-ex/0001021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB154%2C427
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C192
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB403%2C633
http://arxiv.org/abs/hep-ph/9302225
http://arxiv.org/abs/hep-ph/9903361
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C77%2C2182
http://arxiv.org/abs/hep-ph/9610499
http://jhep.sissa.it/stdsearch?paper=01%282000%29027
http://arxiv.org/abs/hep-ph/0001001


J
H
E
P
0
3
(
2
0
0
8
)
0
3
8

[111] C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD

corrections to qq̄ → qq̄, Nucl. Phys. B 601 (2001) 341 [hep-ph/0011094].

[112] C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD

corrections to massless quark gluon scattering, Nucl. Phys. B 605 (2001) 486

[hep-ph/0101304].

[113] E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two-loop QCD corrections to gluon

gluon scattering, Nucl. Phys. B 605 (2001) 467 [hep-ph/0102201].

[114] Z. Bern, A. De Freitas and L.J. Dixon, Two-loop helicity amplitudes for gluon gluon

scattering in QCD and supersymmetric Yang-Mills theory, JHEP 03 (2002) 018

[hep-ph/0201161].
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